合成生物学 ›› 2022, Vol. 3 ›› Issue (2): 279-301.DOI: 10.12211/2096-8280.2022-008

• 特约评述 • 上一篇    下一篇

合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用

郑涵奇1, 吴晴1, 李洪军1,2, 顾臻1,2,3,4   

  1. 1.浙江省先进递药系统重点实验室,浙江大学药学院,浙江 杭州 310058
    2.浙江省系统与精准医学实验室,良渚实验室,浙江大学医学中心,浙江 杭州 311121
    3.浙江大学医学院附属邵逸夫医院,普外科,浙江 杭州 310016
    4.高分子合成与功能化教育部重点实验室,浙江大学高分子科学与工程系,浙江 杭州 310027
  • 收稿日期:2022-01-27 修回日期:2022-02-21 出版日期:2022-04-30 发布日期:2022-05-11
  • 通讯作者: 李洪军,顾臻
  • 作者简介:郑涵奇(2000—),男,硕士研究生。研究方向为新型工程化免疫细胞及其在肿瘤免疫治疗中的应用。 E-mail:zhenghanqi@zju.edu.cn|李洪军(1989—),男,浙江大学特聘研究员,博士生导师。研究方向包括新型工程化免疫细胞用于肿瘤免疫治疗的开发、智能型药物递送系统/器件的开发等。 E-mail:hongjun@zju.edu.cn|顾臻(1980—),男,浙江大学求是讲席教授、药学院院长,教育部“长江学者”讲席教授,浙江省先进递药系统重点实验室主任,国家重点研发计划项目首席科学家,博士生导师。研究方向包括蛋白质/核酸递药系统、生理响应材料、免疫治疗制剂、细胞治疗策略等。 E-mail:guzhen@zju.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFA0909900);国家自然科学基金(52173142);浙江大学科研启动经费

Integration of synthetic biology and nanobiotechnology for biomedical applications

Hanqi ZHENG1, Qing WU1, Hongjun LI1,2, Zhen GU1,2,3,4   

  1. 1.Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems,College of Pharmaceutical Sciences,Zhejiang University,Hangzhou 310058,Zhejiang,China
    2.Zhejiang Laboratory of Systems & Precision Medicine,Liangzhu Laboratory,Zhejiang University Medical Center,Hangzhou 311121,Zhejiang,China
    3.Department of General Surgery,Sir Run Run Shaw Hospital,School of Medicine,Zhejiang University,Hangzhou 310016,Zhejiang,China
    4.MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou 310027,Zhejiang,China
  • Received:2022-01-27 Revised:2022-02-21 Online:2022-04-30 Published:2022-05-11
  • Contact: Hongjun LI,Zhen GU

摘要:

合成生物学与纳米生物学的交叉融合业已成为促进生物技术与生物医药领域发展的重要方向之一。利用合成生物学技术可以帮助生物源性纳米材料创造特殊的结构与功能,驱动纳米生物学的发展。纳米技术的应用则可助力基因线路递送,提升基于合成生物学的生产效率;参与介导基因调控,拓展合成生物学技术的应用场景。合成生物学和纳米生物学的融合可以构建出纳米级功能模块和纳米人工杂合系统,增强改造后体系的功能。本文将着重介绍近期合成生物学和纳米生物学交叉融合的相关研究进展,从纳米技术为合成生物学的发展赋能、合成生物学成为助力纳米技术应用的新引擎以及合成生物学和纳米生物学融合发展这三个角度,着重阐述该领域近期的重点工作,剖析并展望相关技术在基因编辑、药物递送以及医学成像等生物医药领域的应用和前景。未来,合成生物学和纳米生物学的交叉融合可能朝着模块化、标准化、仿生化、功能集成化和智能化的方向进一步发展,为生物医药领域带来新的突破。

关键词: 纳米技术, 合成生物学, 仿生, 基因工程, 药物递送

Abstract:

Synthetic biology aims at designing, transforming, and even re-synthesizing living organisms with specific functions. Nanobiotechnology is devoted to solving major biological problems through drug delivery and disease diagnosis and intervention by utilizing the unique physical, chemical and biological properties of substances at micro-and nano-scales. The integration of synthetic biology and nanobiotechnology promotes the fundamental and clinical development of biomedical science and biotechnology. Nanomaterials obtained through synthetic biology technology could be endowed with unique structures and functions, facilitating the advances of nanobiology. The application of nanotechnology can expand the application scenarios of synthetic biotechnology, improve the production efficiency of target compounds, and enhance the functions of modified organisms. This review focuses on the recent research progress in the interdisciplinary field of synthetic biology and nanobiotechnology from three perspectives, including (1) how can nanotechnology reinforce the development of synthetic biology? (2) how can synthetic biology extend the applications of nanotechnology? (3) how can synthetic biology and nanobiology jointly work to bring in new techniques? Specifically, the nanocarriers can enhance the delivery efficiency of synthetic gene circuits and genome editing agents. The ability to realize the signal transduction of nanoparticles can enable the spatiotemporal control of gene expression via minimally invasive manipulations. The biologic nano-agents strengthened by genetic engineering have been developed, such as the programmed cell-derived particles, including exosomes, microvesicles, and membrane-derived particles. Under the guidance of the philosophy of synthetic biology, modular functional nanocomponents can be formulated by self-assembly on the basis of nucleic acids, proteins, lipids, polymers, and inorganic materials. The nanodevices and engineered biological chassis can benefit the hybrid system through taking advantage of both sides. Furthermore, we also discuss the applications and prospects of related technologies mentioned above in genome editing, drug delivery, diseases diagnosis, and other biomedical fields. At the disciplinary crossroad, the integration of synthetic biology and nanobiotechnology can drive towards modularization, standardization, bioinspiration, functional integration, and intelligentization for next-generation biomedical breakthroughs.

Representative examples for the integration of synthetic biology and nanobiotechnology. Nanotechnology can reinforce the development of synthetic biology by promoting the design and delivery of gene circuits. The delivery of gene circuits can be facilitated by nanocarriers, including organic (a), inorganic (b), and bionic (c) systems. Nanoparticles can convert optical, magnetic, and acoustic signals to thermal signals to regulate gene expression (d). Synthetic biology can extend the applications of nanotechnology through genetically engineering biologic nano-agents. Platelets (e), exosomes (f), microvesicles (g), and membrane-derived vesicles (h) can be programmed through synthetic biology. Synthetic biology and nanobiology can jointly generate functional modules and hybrid systems for artificial biomimetic systems. DNA, lipids, and polymers can self-assemble into functional modules (i), and nanoparticles can be combined with chimeric antigen receptor T-cells and bacteria respectively to form hybrid systems (j).

Key words: nanotechnology, synthetic biology, bioinspired and biomimetic, genetic engineering, drug delivery

中图分类号: