SHI Ting1,2, CHEN Xuemei2, ZHANG Yi-Heng P. Job1,2
Received:
2025-06-04
Revised:
2025-08-05
Contact:
ZHANG Yi-Heng P. Job
石婷1,2, 陈雪梅2, 张以恒1,2
通讯作者:
张以恒
作者简介:
基金资助:
CLC Number:
SHI Ting, CHEN Xuemei, ZHANG Yi-Heng P. Job. New technologies and industrialization progress in healthy sugar biomanufacturing based on in vitro synthetic biology[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-054.
石婷, 陈雪梅, 张以恒. 基于体外合成生物学的健康糖生物制造新技术与产业化进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-054.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-054
Fig. 1 Updated Izumoring strategy for hexoses(Add D-tagatose 4-epimerase to catalyze the synthesis of D-tagatose from D-fructose; omit ketose reductases that catalyze the synthesis of hexitol from D, L-ketose)
Fig. 3 Production of L-arabinose using D-L sugar epimerase based on in vitro Biotransformation (ivBT)(XI, D-xylose isomerase; Xu4E, D-xylulose 4-epimerase; AI, L-arabinose isomerase)
Fig. 4 Application of Zhang Strategy ("ATP-free Phosphorylation-Isomerization-Dephosphorylation" strategy) in in vitro Biotransformation (ivBT): A multi-enzyme molecular machine for healthy sugars
Production method | Enzyme | Substrate | Titer (g/L) | Yield (%) | Productivity (g/L/h) | Temp (oC) | Reference |
---|---|---|---|---|---|---|---|
Enzymatic isomerization | L-AI from Arthrobacter sp. 22c | 100 g/L D-galactose | 30 | 30 | 0.25 | 30 | [ |
L-AI from G. stearothermophilus | 100 g/L D-galactose | 30.6 | 30.6 | 1.9 | 60 | [ | |
L-AI from G. thermodenitrificans | 300 g/L D-galactose | 158 | 52.7 | 8 | 60 | [ | |
L-AI from Thermoanaerobacter mathranii | 300 g/L D-galactose | 126 | 42.0 | 2.6 | 65 | [ | |
L-AI from Thermotaga maritima | 1.8 g/L D-galactose | 1.0 | 56.0 | 0.2 | 80 | [ | |
Tagaturonate 3-epimerase from Thermotoga petrophila | 700 g/L D-fructose | 213 | 30.0 | 107 | 80 | [ | |
Tagatose-4-epimerase from Thermotogae bacterium | 200 g/L D-fructose | 28 | 14.0 | 14 | 70 | [ | |
D-tagaturonate epimerase from Thermotoga neapolitana | 100 g/L D-fructose | 21.8 | 21.8 | 7.3 | 65 | [ | |
Tagatose 4-epimerase from Thermoprotei archaeon | 100 g/L D-fructose | 18.9 | 18.9 | 7.6 | 70 | [ | |
Whole-cell biosynthesis | E. coli BL21/pET28a-P3-LfaraAD390V/V468LlacZ | 500 g/L lactose | 115 | 23.1 | 2.4 | 50 | [ |
E. coli/pETDuet-αgp-pgm andpCDFDuet-pgi-gatz-pgp | 20 g/L maltodextrin | 3.2 | 16.0 | 0.13 | 60 | [ | |
E. coli ER-2GatZ (ΔpΔz) | 10 g/L maltodextrin | 3.38 | 33.8 | 1.13 | 60 | [ | |
Fermentation | S. cerevisiae EJ2g_iXiG_pXpG | 114 g/L lactose | 37.7 | 33 | 0.13 | 30 | [ |
B. subtilis BS-3CA4 | 72 g/L D-galactose | 39.6 | 0.55 | 0.33 | 45 | [ | |
ivBT | αGP, PGM, PGI, TPE, and TPP from B. subtilis | 100 g/L maltodextrin | 78 | 78 | 2.0 | 37 | [ |
αGP, PGM, PGI, TPE, and TPP from E.coli BL21 | 20 g/L maltodextrin | 17.7 | 88.5 | 0.74 | 50 | [ | |
αGP, PGM, PGI, TPE, and TPP from E.coli BL21 | 50 g/L maltodextrin | 37.6 | 75 | 1.57 | 50 | [ |
Table 1 Comparison of Key Technical Indicators for D-Tagatose Synthesis via Enzymatic Isomerization, Whole-cell Biosynthesis, Microbial Fermentation, and in vitro BioTransformation (ivBT)
Production method | Enzyme | Substrate | Titer (g/L) | Yield (%) | Productivity (g/L/h) | Temp (oC) | Reference |
---|---|---|---|---|---|---|---|
Enzymatic isomerization | L-AI from Arthrobacter sp. 22c | 100 g/L D-galactose | 30 | 30 | 0.25 | 30 | [ |
L-AI from G. stearothermophilus | 100 g/L D-galactose | 30.6 | 30.6 | 1.9 | 60 | [ | |
L-AI from G. thermodenitrificans | 300 g/L D-galactose | 158 | 52.7 | 8 | 60 | [ | |
L-AI from Thermoanaerobacter mathranii | 300 g/L D-galactose | 126 | 42.0 | 2.6 | 65 | [ | |
L-AI from Thermotaga maritima | 1.8 g/L D-galactose | 1.0 | 56.0 | 0.2 | 80 | [ | |
Tagaturonate 3-epimerase from Thermotoga petrophila | 700 g/L D-fructose | 213 | 30.0 | 107 | 80 | [ | |
Tagatose-4-epimerase from Thermotogae bacterium | 200 g/L D-fructose | 28 | 14.0 | 14 | 70 | [ | |
D-tagaturonate epimerase from Thermotoga neapolitana | 100 g/L D-fructose | 21.8 | 21.8 | 7.3 | 65 | [ | |
Tagatose 4-epimerase from Thermoprotei archaeon | 100 g/L D-fructose | 18.9 | 18.9 | 7.6 | 70 | [ | |
Whole-cell biosynthesis | E. coli BL21/pET28a-P3-LfaraAD390V/V468LlacZ | 500 g/L lactose | 115 | 23.1 | 2.4 | 50 | [ |
E. coli/pETDuet-αgp-pgm andpCDFDuet-pgi-gatz-pgp | 20 g/L maltodextrin | 3.2 | 16.0 | 0.13 | 60 | [ | |
E. coli ER-2GatZ (ΔpΔz) | 10 g/L maltodextrin | 3.38 | 33.8 | 1.13 | 60 | [ | |
Fermentation | S. cerevisiae EJ2g_iXiG_pXpG | 114 g/L lactose | 37.7 | 33 | 0.13 | 30 | [ |
B. subtilis BS-3CA4 | 72 g/L D-galactose | 39.6 | 0.55 | 0.33 | 45 | [ | |
ivBT | αGP, PGM, PGI, TPE, and TPP from B. subtilis | 100 g/L maltodextrin | 78 | 78 | 2.0 | 37 | [ |
αGP, PGM, PGI, TPE, and TPP from E.coli BL21 | 20 g/L maltodextrin | 17.7 | 88.5 | 0.74 | 50 | [ | |
αGP, PGM, PGI, TPE, and TPP from E.coli BL21 | 50 g/L maltodextrin | 37.6 | 75 | 1.57 | 50 | [ |
Fig. 5 Comparison of biotechnological methods for D-tagatose production(A, Theoretical molar yield: 30%-100%; B, Sources of Gibbs free energy data: eQuilibrator: The Biochemical Thermodynamics Calculator (weizmann.ac.il))
Fig. 6 Design of artificial CO2-to-sugars route (ACSP)FALD: formaldehyde; DHA: dihydroxyacetone; DHAP: dihydroxyacetone phosphate; GALP: glyceraldehyde 3 phosphate; F6P: fructose-6-phosphate; AOX: alcoholoxidase; FLS: formolase; DhaK: dihydroxyacetone kinase; TPI: triosephosphate isomerase; FSA: fructose 6-phosphate aldolase.
[1] | VALENCIA G A. Natural additives in foods[M]. 2023: Cham, Switzerland : Springer. |
[2] | 2024年甜味剂市场现状与发展趋势分析. 2024; Available from: . |
[3] | PHILIPPE R N, DE MEY M, ANDERSON J, et al. Biotechnological production of natural zero-calorie sweeteners[J]. Current Opinion in Biotechnology, 2014. 26: 155-161. |
[4] | XU Y M, WU Y K, LIU Y F, et al. Sustainable bioproduction of natural sugar substitutes: strategies and challenges[J]. Trends in Food Science & Technology, 2022. 129: 512-527. |
[5] | DHAARINI C, TEJASHWINI S, and GAYATHRI M. Biotechnological intervention in production of bioactive compounds: biosynthesis, characterization and applications[M]. 2025: Cham: Springer Nature Switzerland. |
[6] | SUN S, ARAKI Y, HANZAWA F, et al. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats[J]. The Journal of Nutritional Biochemistry, 2021. 93: 108621. |
[7] | YU S, LI C, JI G, et al. The contribution of dietary fructose to non-alcoholic fatty liver disease[J]. Frontiers in Pharmacology, 2021. 12: 783393. |
[8] | WANG S and TONG T. Progress of research on sweeteners and human health[J]. Food and Fermentation Industries, 2024. 50(17): 371-379. |
[9] | DEBRAS C, DESCHASAUX-TANGUY M, CHAZELAS E, et al. Artificial sweeteners and risk of type 2 diabetes in the prospective NutriNet-Santé cohort[J]. Diabetes Care, 2023. 46(9): 1681-1690. |
[10] | ZANI F, BLAGIH J, GRUBER T, et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses[J]. Nature, 2023. 615(7953): 705-711. |
[11] | Aspartame | EFSA. 2023; Available from: . |
[12] | WU W J, SUI W H, CHEN S Z, et al. Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation[J]. Cell Metabolism, 2025. 37(5): 1075-1088. |
[13] | WITKOWSKI M, WILCOX J, PROVINCE V, et al. Ingestion of the non-nutritive sweetener erythritol, but not glucose, enhances platelet reactivity and thrombosis potential in healthy volunteers-brief report[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2024. 44(9): 2136-2141. |
[14] | WITKOWSKI M, NEMET I, ALAMRI H, et al. The artificial sweetener erythritol and cardiovascular event risk[J]. Nature Medicine, 2023. 29(3): 710-718. |
[15] | FAN L, SHI T, CHEN X, et al. Biosynthesis of a healthy natural sugar D-tagatose: advances and opportunities[J]. Critical Reviews in Biotechnology, 2025: 1-16. |
[16] | HAO L, LU X, SUN M, et al. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats[J]. Food & Nutrition Research, 2015. 59: 28886. |
[17] | KROG-MIKKELSEN I, HELS O, TETENS I, et al. The effects of L-arabinose on intestinal sucrase activity: dose-response studies in vitro and in humans[J]. The American Journal of Clinical Nutrition, 2011. 94(2): 472-478. |
[18] | WANG Y, ZHAO J, LI Q, et al. L-Arabinose improves hypercholesterolemia via regulating bile acid metabolism in high-fat-high-sucrose diet-fed mice[J]. Nutrition & Metabolism, 2022. 19(1): 30. |
[19] | LIU K, DONG H, LI X, et al. L-Arabinose alleviates functional constipation in mice by regulating gut microbiota and metabolites[J]. Foods, 2025. 14(5): 900. |
[20] | GIBSON G R and ROBERFROID M B. Dietary modulation of the human colonic microbiota introducing the concept of prebiotics[J]. The Journal of Nutrition, 1995. 125(6): 1401-1412. |
[21] | POL K and MARS M. L-arabinose and D-xylose: sweet pentoses that may reduce postprandial glucose and insulin responses[J]. Food & Nutrition Research, 2021. 65(10): 29219. |
[22] | PASMANS K, MEEX R C R, TROMMELEN J, et al. L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women: a double-blind, randomised crossover trial[J]. The British Journal of Nutrition, 2022. 128(6): 1072-1081. |
[23] | POL K, PUHLMANN M L, and MARS M. Efficacy of L-arabinose in lowering glycemic and insulinemic responses: the modifying effect of starch and fat[J]. Foods, 2022. 11(2): 157. |
[24] | MATSUO T, SUZUKI H, HASHIGUCHI M, et al. D-Psicose is a rare sugar that provides no energy to growing rats[J]. Journal of Nutritional Science & Vitaminology, 2002. 48(1): 77-80. |
[25] | O'CHAROEN S, HAYAKAWA S, and OGAWA M. Food properties of egg white protein modified by rare ketohexoses through Maillard reaction[J]. International Journal of Food Science & Technology, 2014. 50(1): 194-202. |
[26] | KANASAKI A, IIDA T, MURAO K, et al. D-Allulose enhances uptake of HDL-cholesterol into rat's primary hepatocyte via SR-B1[J]. Cytotechnology, 2020. 72(2): 295-301. |
[27] | MOON S, KIM Y H, and CHOI K. Inhibition of 3T3-L1 adipocyte differentiation by D-allulose[J]. Biotechnology and Bioprocess Engineering, 2020. 25(1): 22-28. |
[28] | 石婷, 宋展, 宋世怡, et al. 体外生物转化 (in vitro BioTransformation, ivBT):生物制造的新前沿[J]. 合成生物学, 2024. 5(6): 1-24. |
[29] | ZHANG Y-H P J, ZHU Z, YOU C, et al. In vitro BioTransformation (ivBT): Definitions, opportunities, and challenges[J]. Synthetic Biology and Engineering, 2023. 1(2): 10013. |
[30] | ZAREZADEH M, DEHGHANI A, FAGHFOURI A H, et al. Inositol supplementation and body mass index: a systematic review and meta-analysis of randomized clinical trials[J]. Obesity Science & Practice, 2022. 8(3): 387-397. |
[31] | GREFF D, JUHASZ A E, VANCSA S, et al. Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials[J]. Reproductive Biology and Endocrinology, 2023. 21(1): 10. |
[32] | LOPEZ-GAMBERO A J, SANJUAN C, SERRANO-CASTRO P J, et al. The biomedical uses of inositols: a nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases[J]. Biomedicines, 2020. 8(9): 295. |
[33] | YOU C, SHI T, LI Y, et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch[J]. Biotechnology and Bioengineering, 2017. 114(8): 1855-1864. |
[34] | 欧阳平凯. 我国工业生物技术发展回顾及展望[J]. 生物工程学报, 2022. 38(11): 3991-4000. |
[35] | GRANSTRöM T B, TAKATA G, TOKUDA M, et al. Izumoring: a novel and complete strategy for bioproduction of rare sugars[J]. Journal of Bioscience and Bioengineering, 2004. 97(2): 89-94. |
[36] | IZUMORI K. Izumoring: a strategy for bioproduction of all hexoses[J]. Journal of Biotechnology, 2006. 124(4): 717-722. |
[37] | ZHANG W, CHEN D, CHEN J, et al. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges[J]. Critical Reviews in Food Science and Nutrition, 2023. 63(22): 5661-5679. |
[38] | WU H, ZHANG W, and MU W. Recent studies on the biological production of D-mannose[J]. Applied Microbiology and Biotechnology, 2019. 103(21-22): 8753-8761. |
[39] | SHEN J D, XU B P, YU T L, et al. Identification of hyperthermophilic D-allulose 3-epimerase from Thermotoga sp. and its application as a high-performance biocatalyst for D-allulose synthesis[J]. Bioprocess and Biosystems Engineering, 2024. 47(6): 841-850. |
[40] | JIAJUN CHEN Z H, TING SHI, DAWEI NI, YINGYING ZHU, WEI XU, WENLI ZHANG, WANMENG MU. Engineering D-allulose 3-epimerase from Clostridium cellulolyticum for improved thermostability using directed evolution facilitated by a nonenzymatic colorimetric screening assay[J]. Food Bioscience, 2023. 53: 102607. |
[41] | YANG J, TIAN C, ZHANG T, et al. Development of food-grade expression system for D-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose[J]. Biotechnology and Bioengineering, 2019. 116(4): 745-756. |
[42] | GAO X, FANG S B, MA X Z, et al. Customized self-assembled bimetallic hybrid nanoflowers promoting the robustness of D-allulose 3-epimerase[J]. Chemical Engineering Journal, 2024. 484: 149453. |
[43] | LI Z Y, LIU T, PEI W W, et al. Immobilization of a novel D-allulose 3-epimerase from Bacillus cihuensis within metal-organic frameworks[J]. Food Bioscience, 2024. 59: 104202. |
[44] | XIAO Z Q, JIANG B, CHEN J J, et al. Immobilization and stabilization of D-allulose 3-epimerase for continuous D-allulose synthesis in packed-bed reactors[J]. Food Bioscience, 2025. 64: 105959. |
[45] | WEN X, LIN H B, LIU G W, et al. Immobilization of cells expressing D-allulose 3-epimerase and their application in D-allulose bioproduction with the assistance of boric acid[J]. Food Bioscience, 2025. 65: 106027. |
[46] | SHEN J D, XU B P, HUANG L G, et al. Study on immobilization of hyperthermophilic D-allulose 3-epimerase and properties of immobilized enzyme[J]. Journal of Food Science and Technology, 2025. 43(2): 42-50. |
[47] | REN S, LI C, JIAO X, et al. Recent progress in multienzymes co-immobilization and multienzyme system applications[J]. Chemical Engineering Journal, 2019. 373: 1254-1278. |
[48] | LIM B C, KIM H J, and OH D K. High production of D-tagatose by the addition of boric acid[J]. Biotechnology Progress, 2007. 23(4): 824-828. |
[49] | K-C SHIN, LEE T-E, SEO M-J, et al. Development of tagaturonate 3-epimerase into tagatose 4-epimerase with a biocatalytic route from fructose to tagatose[J]. ACS Catalysis, 2020. 10(20): 12212-12222. |
[50] | CHEN J J, NI D W, ZHU Y Y, et al. Discovery of a thermostable tagatose 4-epimerase powered by structure- and sequence-based protein clustering[J]. Journal of Agricultural and Food Chemistry, 2024. 72(33): 18585-18593. |
[51] | KHERSONSKY O, ROODVELDT C, and TAWFIK D S. Enzyme promiscuity: evolutionary and mechanistic aspects[J]. Current Opinion in Chemical Biology, 2006. 10(5): 498-508. |
[52] | HULT K and BERGLUND P. Enzyme promiscuity: mechanism and applications[J]. Trends in Biotechnology, 2007. 25(5): 231-238. |
[53] | RODIONOVA I A, SCOTT D A, GRISHIN N V, et al. Tagaturonate-fructuronate epimerase UxaE, a novel enzyme in the hexuronate catabolic network in Thermotoga maritima [J]. Environmental microbiology, 2012. 14(11): 2920-2934. |
[54] | WILLE D, HAURI-HOHL M, VONBACH P, et al. Too much of too little: xylitol, an unusual trigger of a chronic metabolic hyperchloremic acidosis[J]. European Journal of Pediatrics, 2010. 169(12): 1549-1551. |
[55] | OKU T and NAKAMURA S. Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults[J]. Journal of Nutritional Science and Vitaminology, 2007. 53(1): 13-20. |
[56] | LI Y, SHI T, HAN P, et al. Thermodynamics-driven production of value-added D-allulose from inexpensive starch by an in vitro enzymatic synthetic biosystem[J]. ACS Catalysis, 2021. 11(9): 5088-5099. |
[57] | TIAN C, YANG J, LI Y, et al. Artificially designed routes for the conversion of starch to value-added mannosyl compounds through coupling in vitro and in vivo metabolic engineering strategies[J]. Metabolic Engineering, 2020. 61: 215-224. |
[58] | WANG P Y, ZHENG Y T, LI Y P, et al. Recent advances in biotransformation, extraction and green production of D-mannose[J]. Current Research in Food Science, 2022. 5: 49-56. |
[59] | WICHELECKI D J, VETTING M W, CHOU L, et al. ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel D-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58[J]. Journal of Biological Chemistry, 2015. 290(48): 28963-28976. |
[60] | MORADIAN A and BENNER S A. A biomimetic biotechnological process for converting starch to fructose: thermodynamic and evolutionary considerations in applied enzymology[J]. Journal of the American Chemical Society, 1992. 114(18): 6980-6987. |
[61] | WICHELECKI D J and ZHANG Y-H P, Enzymatic synthesis of D-tagatose : US62236226[P]. 2015-10-02. |
[62] | ZHANG Y H, EVANS B R, MIELENZ J R, et al. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway[J]. PLoS One, 2007. 2(5): e456. |
[63] | HUANG H, PANDYA C, LIU C, et al. Panoramic view of a superfamily of phosphatases through substrate profiling[J]. Proceedings of the National Academy of Sciences, 2015. 112(16): 1974-1983. |
[64] | 马延和, 孙媛霞, 杨建刚, al et, 一种全细胞催化制备塔格糖的方法 : CN107988286A[P]. 2017-11-02. |
[65] | MA Y H, SUN Y X, YANG J G, al et, Engineering strain for producing tagatose, and construction method and application thereof : CN109666620B[P]. 2019-02-20. |
[66] | MA Y H, SHI T, LI Y J, al et, Bacillus subtilis gene engineering bacteria for producing tagatose and method for preparing tagatose : CN112342179B[P]. 2021-01-05. |
[67] | HAN P, WANG X, LI Y, et al. Synthesis of a healthy sweetener D-tagatose from starch catalyzed by semiartificial cell factories[J]. Journal of Agricultural and Food Chemistry, 2023. 71(8): 3813-3820. |
[68] | LIU Y, QIAO Z, ZHANG H, et al. One-step whole-cell synthesis of D-tagatose from lactose catalyzed by recombinant Escherichia coli [J]. Chinese Journal of Biotechnology, 2025. 41(5): 1974-1993. |
[69] | DAI Y, ZHANG J, ZHANG T, et al. Characteristics of a fructose 6-phosphate 4-epimerase from Caldilinea aerophila DSM 14535 and its application for biosynthesis of tagatose[J]. Enzyme and Microbial Technology, 2020. 139: 109594. |
[70] | DAI Y W, LI M L, JIANG B, et al. Whole-cell biosynthesis of D-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system[J]. Enzyme and Microbial Technology, 2021. 145 |
[71] | DAI Y, ZHANG T, JIANG B, et al. Dictyoglomus turgidum DSM 6724 alpha-Glucan phosphorylase: characterization and its application in multi-enzyme cascade reaction for D-tagatose production[J]. Applied Biochemistry and Biotechnology, 2021. 193(11): 3719-3731. |
[72] | DAI Y, LI C, ZHENG L, et al. Enhanced biosynthesis of D-tagatose from maltodextrin through modular pathway engineering of recombinant Escherichia coli [J]. Biochemical Engineering Journal, 2022. 178: 108303. |
[73] | CHEETHAM P S J and WOOTTON A N. Bioconversion of D-galactose into D-tagatose[J]. Enzyme and Microbial Technology, 1993. 15: 105-108. |
[74] | CHEN J, WEI Y, NI D, et al. Biochemical characterization and biocatalytic application of a hyperthermostable tagatose 4-epimerase from Infirmifilum uzonense [J]. International Journal of Biological Macromolecules, 2025. 305(Pt 1): 141168. |
[75] | LIU J J, ZHANG G C, KWAK S, et al. Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation[J]. Nature Communications, 2019. 10(1): 1356. |
[76] | ZHANG G, AN Y, ZABED H M, et al. Rewiring Bacillus subtilis and bioprocess optimization for oxidoreductive reaction-mediated biosynthesis of D-tagatose[J]. Bioresource Technology, 2023. 389: 129843. |
[77] | LIU Z, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020. 3(3): 274-288. |
[78] | WEYMOUTH-WILSON A C. The role of carbohydrates in biologically active natural products[J]. Natural Product Reports, 1997. 14(2): 99-110. |
[79] | KEELING P L and MYERS A M. Biochemistry and genetics of starch synthesis[J]. Annual Review of Food Science and Technology, 2010. 1: 271-303. |
[80] | CAI T, SUN H, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021. 373(6562): 1523-1527. |
[81] | BLANKENSHIP R E, TIEDE D M, BARBER J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011. 332(6031): 805-809. |
[82] | YANG J, ZHANG T, TIAN C, et al. Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: advances and perspectives[J]. Biotechnology advances, 2019. 37(7): 107406. |
[83] | DESMONS S, GRAYSON-STEEL K, NUNEZ-DALLOS N, et al. Enantioselective reductive oligomerization of carbon dioxide into L-erythrulose via a chemoenzymatic catalysis[J]. Journal of the American Chemical Society, 2021. 143(39): 16274-16283. |
[84] | YANG J, SONG W, CAI T, et al. De novo artificial synthesis of hexoses from carbon dioxide[J]. Science Bulletin, 2023. 68(20): 2370-2381. |
[85] | ZHANG Y-H P J. The enlightenment of the chinese philosophy "Tao-Fa-Shu-Qi" to industrial biomanufacturing[J]. Synthetic Biology Journal 2023. 4: 1-11. |
[86] | PAN Y, LIU Y, LONG T, et al. Biomanufacturing of inositol from corn stover with biological pretreatment by an in vitro synthetic biology platform[J]. ACS Sustainable Chemistry & Engineering, 2025. 13(1): 436-446. |
[87] | CHENG K, ZHENG W, CHEN H, et al. Upgrade of wood sugar D-xylose to a value-added nutraceutical by in vitro metabolic engineering[J]. Metabolic Engineering, 2019. 52: 1-8. |
[88] | YOU C, CHEN H, MYUNG S, et al. Enzymatic transformation of nonfood biomass to starch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(18): 7182-7187. |
[89] | TANG S, LIAO D, LI X, et al. Cell-free biosynthesis system: methodology and perspective of in vitro efficient platform for pyruvate biosynthesis and transformation[J]. ACS Synthetic Biology, 2021. 10(10): 2417-2433. |
[90] | ROLLIN J A, MARTIN DEL CAMPO J, MYUNG S, et al. High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(16): 4964-4969. |
[91] | OPGENORTH P H, KORMAN T P, and BOWIE J U. A synthetic biochemistry module for production of bio-based chemicals from glucose[J]. Nature Chemical Biology, 2016. 12(6): 393-395. |
[92] | SHI T, LIU S, and ZHANG Y-H P J. CO2 fixation for malate synthesis energized by starch via in vitro metabolic engineering[J]. Metabolic Engineering, 2019. 55: 152-160. |
[93] | MOXLEY G and ZHANG Y-H P. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharificatio[J]. Energy & Fuels, 2007. 21(6): 3684-3688. |
[94] | 舒国伟, 张璐, 刘谕, et al. 玉米芯中提取木聚糖的研究[J]. 甘肃农业大学学报, 2008. 043(002): 131-135. |
[95] | 樊洪玉, 卫民, 赵剑, et al. 玉米芯木聚糖的提取及其相对分子质量分布研究[J]. 生物质化学工程, 2019. 53(3): 24-32. |
[96] | 张以恒, 陈雪梅, and 韩平平. 生物制造的PE值与PX值:定义与应用[J]. 合成生物学, 2025. 6: 1-14. |
[97] | YE J, LI Y J, BAI Y Q, et al. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis [J]. Bioresources and Bioprocessing, 2022. 9(56): 1-12. |
[98] | NINH P H, HONDA K, SAKAI T, et al. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering[J]. Biotechnology and Bioengineering, 2015. 112(1): 189-196. |
[99] | SHELDON R A and VAN PELT S. Enzyme immobilisation in biocatalysis: why, what and how[J]. Chemical Society Reviews, 2013. 42: 6223-6235. |
[100] | BETANCOR L and LUCKARIFT H. Co-immobilized coupled enzyme systems in biotechnology[J]. Biotechnology and Genetic Engineering Reviews, 2010. 27: 95-114. |
[101] | HAN P, YOU C, LI Y, et al. High-titer production of myo-inositol by a co-immobilized four-enzyme cocktail in biomimetic mineralized microcapsules[J]. Chemical Engineering Journal, 2023. 461: 141946. |
[102] | 刘宗利, 王乃强, 王明珠, et al. 模拟移动床色谱分离技术在功能糖生产中的应用[J]. 中国食品添加剂, 2012. 23(S1): 200-204. |
[103] | GABSI K, TRIGUI M, HELAL A N, et al. Simulated moving bed technology for the separation of fructose from date syrup[J]. International Journal of Current Engineering and Technology, 2015. 5(2): 1183-1190. |
[104] | WANARSKA M KUR J. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting beta-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c[J]. Microbial Cell Factories, 2012. 11: 113. |
[105] | KIM H J, RYU S A, KIM P, et al. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor[J]. Biotechnology Progress, 2003. 19(2): 400-404. |
[106] | JORGENSEN F, HANSEN O C, and STOUGAARD P. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii [J]. Applied Microbiology and Biotechnology, 2004. 64(6): 816-822. |
[107] | LEE D W, JANG H J, CHOE E A, et al. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima [J]. Applied and Environmental Microbiology, 2004. 70(3): 1397-1404. |
[108] | WANG L, TAN Z, XIE X, et al. Discovery and characterization of a novel tagatose-4-epimerase[J]. Acta Microbiologica Sinica, 2023. 63: 4197-4207. |
[109] | XIA W, LIU S, HUANG L, et al. Reshaping the binding pocket of D-tagaturonate epimerase UxaE to improve the epimerization activity of C4-OH for enabling green synthesis of D-tagatose[J]. Molecular Catalysis, 2024. 566: 114439. |
[110] | MA Y H and SUN Y X, Tagatose preparation method : CN106399427A[P]. 2016-11-01. |
[1] | Ding Yi, Su Min, Gao Xiaodong, Wang Ning. Advances in Research of N-Glycan Synthesis [J]. Synthetic Biology Journal, 2025, (): 1-16. |
[2] | WANG Kunkun, CHEN Hongyu, ZHANG Andong, LU Xiaoyun, TAN Dan. A preliminary study on the regulation and analysis of indole mediated bidirectional chemotaxis behavior of Escherichia coli [J]. Synthetic Biology Journal, 2025, (): 1-22. |
[3] | YANG Shuai, XU YunDong, JIN Fan. Applications and Ethical Governance of Synthetic Biology in Medical Diagnosis and Treatment: Technological Breakthroughs and Value Boundaries [J]. Synthetic Biology Journal, 2025, (): 1-19. |
[4] | CUI Zhongxin, WANG Yi, ZHANG Lei, QI Haishan. Engineering fungal antifreeze proteins through ‘EKylation’ and mechanism analysis [J]. Synthetic Biology Journal, 2025, (): 1-12. |
[5] | LI Yi, LI Yinshuang, LI Shuang, LING Peixue, FANG Junqiang. Recent Progress on the in vitro Bio-transformation Synthesis of Human Milk Oligosaccharides [J]. Synthetic Biology Journal, 2025, (): 1-16. |
[6] | HUANG Yang, LI Yiye, NIE Guangjun. Synthetic Biology-Powered Cell Membrane-Derived Nanoparticles for Precision Theranostics [J]. Synthetic Biology Journal, 2025, (): 1-24. |
[7] | LI Quanfei, CHEN Qian, YANG Kai, LIU Hao, LI Sha, LEI Peng, GU Yian, SUN Liang, WANG Rui, XU Hong. Biosynthesis and applications of high-adhesion protein materials [J]. Synthetic Biology Journal, 2025, (): 1-20. |
[8] | ZHU Yueming, YANG Jiangang, ZENG Yan, DONG Qianzhen, SUN Yuanxia. Advances and applications of in vitro biosynthesis of carbohydrates [J]. Synthetic Biology Journal, 2025, (): 1-16. |
[9] | HU Die, XU Daozhu, LU Zhiyi, TANG Wei, FAN Bo, HE Yucai. Biosynthesis of xylo-oligosaccharides from wheat straw xylan via the synergistic hydrolysis by xylanase Xyn11A and arabinofuranosidase Abf62A [J]. Synthetic Biology Journal, 2025, (): 1-15. |
[10] | MA Muqing, WU Yan, QU Maohua, LU Xiafeng, CAO Min, DU Feng, JI Rongtao, DONG Leichi, LUO Zhibo. Extracellular Multi-enzyme Assembly and Biocatalytic Cascade: Advances and Prospects [J]. Synthetic Biology Journal, 2025, (): 1-20. |
[11] | XIAO He, YAO Mingju, QIAO Xue. Advances in the biosynthesis of long sugar-chain saponins [J]. Synthetic Biology Journal, 2025, (): 1-7. |
[12] | . [J]. Synthetic Biology Journal, 2025, 6(3): 493-496. |
[13] | YANG Ying, LI Xia, LIU Lizhong. Applications of synthetic biology to stem-cell-derived modeling of early embryonic development [J]. Synthetic Biology Journal, 2025, 6(3): 669-684. |
[14] | LI Mingchen, ZHONG Bozitao, YU Yuanxi, JIANG Fan, ZHANG Liang, TAN Yang, YU Huiqun, FAN Guisheng, HONG Liang. DeepSeek model analysis and its applications in AI-assistant protein engineering [J]. Synthetic Biology Journal, 2025, 6(3): 636-650. |
[15] | HUANG Yi, SI Tong, LU Anjing. Standardization for biomanufacturing: global landscape, critical challenges, and pathways forward [J]. Synthetic Biology Journal, 2025, 6(3): 701-714. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||