Synthetic Biology Journal

   

Synthetic Biology-Powered Cell Membrane-Derived Nanoparticles for Precision Theranostics

HUANG Yang1,2, LI Yiye1,3, NIE Guangjun1,2,3   

  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology of China,Beijing 100190,China
    2.School of Nanoscience and Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
    3.College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2025-06-30 Revised:2025-07-23 Published:2025-07-28
  • Contact: LI Yiye, NIE Guangjun

合成生物学赋能细胞膜纳米颗粒的精准诊疗

黄扬1,2, 李一叶1,3, 聂广军1,2,3   

  1. 1.国家纳米科学中心,中国科学院纳米生物效应与安全性重点实验室,中国科学院纳米科学卓越创新中心,北京,100190
    2.中国科学院大学,纳米科学与工程学院,北京,100049
    3.中国科学院大学,材料科学与光电技术学院,北京,100049
  • 通讯作者: 李一叶,聂广军
  • 作者简介:黄扬(2001—),女,硕士研究生,研究方向为纳米材料在骨相关疾病中的应用。E-mail:huangy2023@nanoctr.cn
    李一叶(1977—),女,博士,研究员,研究方向为纳米生物医学与纳米药物。E-mail:liyy@nanoctr.cn
    聂广军(1974—),男,博士,研究员,研究方向为纳米生物学与智能纳米药物。 E-mail:niegj@nanoctr.cn
  • 基金资助:
    国家自然科学基金(2021YFA1201103);国家自然科学基金(2023YFC2509900)

Abstract:

Cell membrane-derived nanoparticles (CNPs) integrate the biological characteristics of natural cell membranes (e.g., immune evasion, lesion targeting and immune modulation) with the tailorable physicochemical properties of synthetic nanomaterials, demonstrating significant advantages such as prolonged circulation, high biocompatibility, and specific targeting in disease diagnosis and treatment. However, their clinical application is limited by the inherent heterogeneity and functional limitations of natural membranes, including restricted targeting specificity, uncontrollable responsiveness, and lack of functionality. Synthetic biology provides innovative strategies to overcome these bottlenecks, driving a paradigm shift in CNPs from natural biomimicry to precise design. Genetic engineering enables precise editing of cell membrane protein expression via physical (e.g., electroporation, microinjection and gene gun), chemical (cationic lipids/polymers), and biological (viral vectors) strategies. Concurrently, metabolic engineering regulates the directional anchoring of functional moieties on cell membrane through manipulating cells' natural biosynthetic pathways, such as glycan (sialic acid and N-acetylgalactosamine (GalNAc) salvage pathways) and lipid (cytidine 5'-diphosphocholine pathway) metabolism. These approaches endow CNPs with enhanced targeting specificity, intelligent responsiveness (e.g., pH/enzyme/light-triggered drug release), and multifunctional synergy, enabling them to demonstrate significant therapeutic potential across diverse diseases including malignant tumors, cardiovascular diseases, and infectious diseases. In oncology, synthetic CNPs (SCNPs) deliver chemotherapeutics, radiotherapy sensitizers and contrast agents with tumor-homing specificity and enable innovative immunotherapies by presenting checkpoint inhibitors, tumor antigens or adjuvants. For cardiovascular diseases, SCNPs demonstrate remarkable inflammatory targeting and alleviation capabilities. In infectious diseases, SCNPs neutralize toxins, bacteria and viruses as broad-spectrum "nanosponges", while antigen-presenting SCNPs act as potent vaccines. Applications of SCNPs extend to autoimmune conditions, neurodegenerative disorders and bone-related diseases. Although challenges remain in safety assessment, scalable manufacturing, and regulatory frameworks, advances in artificial intelligence-assisted rational design, novel gene editing tools (e.g., prime editing) for safer genomic modifications, metabolic intervention technologies optimizations, alongside the establishment of standardized production platforms, are poised to bridge the gap between laboratory and clinic. Ultimately, synthetic biology-powered CNPs are anticipated to evolve into intelligent nano-theranostic platformsfacilitating precision medicine.

Key words: cell membrane-derived nanoparticles, synthetic biology, genetic engineering, metabolic engineering, precision medicine

摘要:

细胞膜纳米颗粒(cell membrane-derived nanoparticles, CNPs)能够有效整合天然细胞膜的生物学特性和纳米材料的理化性质,在疾病诊疗研究中展现出循环时间长、生物相容性好和靶向特异性强等优势;但其临床应用受限于天然膜的异质性和功能局限性。合成生物学为突破这一瓶颈提供了创新性策略,驱动CNPs实现从天然仿生到精准设计的范式转变。基因工程技术通过物理、化学及生物学手段精准编辑细胞膜蛋白表达,而代谢工程技术通过糖类和脂质代谢等通路实现细胞膜表面功能分子的定向锚定,从而赋予CNPs增强的靶向特异性、智能响应性与多功能协同性,使其在恶性肿瘤、心血管疾病和感染性疾病等多种疾病领域展现出巨大潜力。尽管在安全性评估、规模化生产和监管框架构建等方面仍面临挑战,但随着人工智能辅助设计、新型基因编辑和代谢介入技术的发展以及标准化生产平台的建立,合成生物学赋能的CNPs有望实现从实验室研究向临床应用的跨越,发展成为助力精准医疗的智能纳米诊疗平台。

关键词: 细胞膜纳米颗粒, 合成生物学, 基因工程, 代谢工程, 精准医疗

CLC Number: