Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (5): 821-825.DOI: 10.12211/2096-8280.2022-049
Previous Articles Next Articles
Received:
2022-09-09
Revised:
2022-09-19
Online:
2022-11-16
Published:
2022-10-31
孙韬1,2,3, 张卫文1,2,3, 胡章立4,5, 元英进1,3
作者简介:
CLC Number:
孙韬, 张卫文, 胡章立, 元英进. 合成生物学助力碳中和:新底盘、新策略与新技术[J]. 合成生物学, 2022, 3(5): 821-825.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-049
1 | 央视新闻. 碳达峰与碳中和[EB/OL] (2021-03-10)[2022-09-09]. . |
2 | 央视. 中美发表应对气候危机联合声明[EB/OL] (2021-04-18)[2022-09-09]. . |
3 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. |
4 | KANNO M, CARROLL A L, ATSUMI S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria[J]. Nature Communications, 2017, 8: 14724. |
5 | LAN E I, LIAO J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. |
6 | SUN T, LI S B, SONG X Y, et al. Toolboxes for cyanobacteria: Recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307. |
7 | LIEW F E, NOGLE R, ABDALLA T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale[J]. Nature Biotechnology, 2022, 40(3): 335-344. |
8 | WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642. |
9 | SCHUCHMANN K, MÜLLER V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase[J]. Science, 2013, 342(6164): 1382-1385. |
10 | ZHENG T T, ZHANG M L, WU L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5(5): 388-396. |
11 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
12 | 杨健钊, 朱新广. 面向碳达峰与碳中和的植物合成生物学[J]. 合成生物学, 2022, 3(5): 847-869. |
YANG J Z, ZHU X G. Plant synthetic biology for carbon peak and carbon neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 847-869. | |
13 | 盛阳阳, 徐秀美, 张巧红, 等. 光合作用碳同化的合成生物学研究进展[J]. 合成生物学, 2022, 3(5): 870-883. |
SHENG Y Y, XU X M, ZHANG Q H, et al. Advances in synthetic biology for photosynthetic carbon assimilation[J]. Synthetic Biology Journal, 2022, 3(5): 870-883. | |
14 | 史梦琳, 周琳, 王庆, 等. 植物二氧化碳代谢途径改造研究进展[J]. 合成生物学, 2022, 3(5): 985-1005. |
SHI M L, ZHOU L, WANG Q, et al. Advances in the study on the modification of carbon dioxide metabolic pathways in plants[J]. Synthetic Biology Journal, 2022, 3(5): 985-1005. | |
15 | 肖璐, 李寅. 生物固碳:从自然生物到人工合成[J]. 合成生物学, 2022, 3(5): 833-846. |
XIAO L, LI Y. Biological carbon fixation: from natural to synthetic[J]. Synthetic Biology Journal, 2022, 3(5): 833-846. | |
16 | JAISWAL D, SAHASRABUDDHE D, WANGIKAR P P. Cyanobacteria as cell factories: The roles of host and pathway engineering and translational research[J]. Current Opinion in Biotechnology, 2022, 73: 314-322. |
17 | 赵权宇. 面向碳中和的微藻适应性实验室进化研究进展[J]. 合成生物学, 2022, 3(5): 901-914. |
ZHAO Q Y. Research progress in carbon neutrality oriented adaptive laboratory evolution of microalgae[J]. Synthetic Biology Journal, 2022, 3(5): 901-914. | |
18 | 孙中亮, 陈辉, 王强. 从CO2到有机物——碳中和的微藻绿色生物制造[J]. 合成生物学, 2022, 3(5): 953-965. |
SUN Z L, CHEN H, WANG Q. From CO2 to value-added products—carbon neutral microalgal green biomanufacturing[J]. Synthetic Biology Journal, 2022, 3(5): 953-965. | |
19 | 崔金玉, 张爱娣, 栾国栋, 等. 微藻光驱固碳合成技术的发展现状与未来展望[J]. 合成生物学, 2022, 3(5): 884-900. |
CUI J Y, ZHANG A D, LUAN G D, et al. Engineering microalgae for photosynthetic biosynthesis: progress and prospect[J]. Synthetic Biology Journal, 2022, 3(5): 884-900. | |
20 | 王松, 吴莎, 江亚男, 等. 微藻光合作用的优化升级助力“双碳”目标[J]. 合成生物学, 2022, 3(5): 915-931. |
WANG S, WU S, JIANG Y N, et al. Optimization and upgradation of microalgal photosynthesis for carbon peaking and carbon neutrality goals[J]. Synthetic Biology Journal, 2022, 3(5): 915-931. | |
21 | 陶飞, 孙韬, 王钰, 等. “双碳”背景下聚球藻底盘研究的挑战与机遇[J]. 合成生物学, 2022, 3(5): 932-952. |
TAO F, SUN T, WANG Y, et al. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 932-952. | |
22 | 董正鑫, 孙韬, 陈磊, 等. 调控工程在光合蓝细菌中的应用[J]. 合成生物学, 2022, 3(5): 966-984. |
DONG Z X, SUN T, CHEN L, et al. Applications of regulatory engineering in photosynthetic cyanobacteria[J]. Synthetic Biology Journal, 2022, 3(5): 966-984. | |
23 | 由紫暄, 李锋, 宋浩. 电能细胞的合成生物学设计构建[J]. 合成生物学, 2022,3(5): 1031-1059. |
YOU Z X, LI F, SONG H. Design and construction of electroactive cells by synthetic biology strategies[J]. Synthetic Biology Journal, 2022, 3(5): 1031-1059. | |
24 | 崔馨予, 吴冉冉, 王园明, 等. 酶促生物电催化系统的设计构建与强化[J]. 合成生物学, 2022, 3(5): 1006-1030. |
CUI X Y, WU R R, WANG Y M, et al. Construction and enhancement of enzymatic bioelectrocatalytic systems[J]. Synthetic Biology Journal, 2022, 3(5): 1006-1030. | |
25 | 刘建明, 曾安平. 无细胞多酶分子机器赋能二氧化碳的高值利用及其挑战[J]. 合成生物学, 2022, 3(5): 825-832. |
LIU J M, ZENG A P. Cell-free multi-enzyme machines for CO2 capture, utilization and its associated challenges[J]. Synthetic Biology Journal, 2022, 3(5): 825-832. |
[1] | Jingqin YE, Wenhua HUANG, Chao PAN, Li ZHU, Hengliang WANG. Applications of synthetic biology in developing polysaccharide conjugate vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 338-352. |
[2] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[3] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[4] | . [J]. Synthetic Biology Journal, 2024, 5(2): 217-220. |
[5] | Shasha JIANG, Chen WANG, Ran LU, Fengjun LIU, Jun LI, Bin WANG. Applications of vector vaccines developed through T-cell immune responses in preventing and treating human diseases [J]. Synthetic Biology Journal, 2024, 5(2): 294-309. |
[6] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[7] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[8] | Mingwei SHAO, Simian SUN, Shimao YANG, Guo-Qiang CHEN. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, (): 1-18. |
[9] | Haoran YANG, Farong Ye, Ping HUANG, Ping WANG. Recent advances in glycoprotein synthesis [J]. Synthetic Biology Journal, 2024, (): 1-29. |
[10] | Meng Chai, Feng-Qing Wang, Dong-Zhi Wei. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, (): 1-22. |
[11] | Xiaolei CHENG, Tiangang LIU, Hui TAO. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, (): 1-23. |
[12] | Mengmeng ZHENG, Benben LIU, Zhi LIN, Xudong QU. Recent advances in chemoenzymatic synthesis of important steroids [J]. Synthetic Biology Journal, 2024, (): 1-19. |
[13] | Haotian ZHENG, Chaofeng LI, Liangxu LIU, Jiawei WANG, Hengrun LI, Jun NI. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, (): 1-22. |
[14] | Yu CHEN, Kang ZHANG, Yijing QIU, Caiyun CHENG, Jingjing YIN, Tianshun SONG, Jingjing XIE. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, (): 1-24. |
[15] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, (): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||