Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (5): 981-996.DOI: 10.12211/2096-8280.2024-037
• Invited Review • Previous Articles Next Articles
Xiangqian XIE1, Wen GUO1, Huan WANG1, Jin LI1,2
Received:
2024-04-17
Revised:
2024-07-26
Online:
2024-11-20
Published:
2024-10-31
Contact:
Jin LI
谢向前1, 郭雯1, 王欢1, 李进1,2
通讯作者:
李进
作者简介:
基金资助:
CLC Number:
Xiangqian XIE, Wen GUO, Huan WANG, Jin LI. Biosynthesis and chemical synthesis of ribosomally synthesized and post-translationally modified peptides containing aminovinyl cysteine[J]. Synthetic Biology Journal, 2024, 5(5): 981-996.
谢向前, 郭雯, 王欢, 李进. 含氨基乙烯半胱氨酸核糖体肽的生物合成与化学合成[J]. 合成生物学, 2024, 5(5): 981-996.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-037
亚家族 | 天然产物 | 产生菌株 | 生物活性 |
---|---|---|---|
羊毛硫肽 | Microbisporicins[ | Microbispora ATCC PTA-5024 | 对MRSA、Streptococcus pneumoniae等有抗菌活性 |
Epidermin[ | Staphylococcus epidermidis Tü 3298 | 对Mariniluteicoccus flavus、Staphylococcus simulans等有抗菌活性 | |
Mersacidin[ | Bacillus amyloliquefaciens | 对Staphylococcus aureus、MRSA等有抗菌活性 | |
Lexapeptide[ | Streptomyces rochei Sal35 | 对MRSA、MRSE等有抗菌活性 | |
Lipolanthines | Microvionin[ | Microbacterium arborescens | 对MRSA、Streptococcus pneumoniae等有抗菌活性 |
Nocavionin[ | Nocardia terpenica | 尚未报道 | |
Goadvionins[ | Streptomyces sp. TP-A0584 | 对Staphylococcus aureus、Bacillus subtilis等有抗菌活性 | |
Lipoavitides[ | Streptomyces sp. NRRL S-1521 | 溶血活性 | |
Linaridins | Cypemycin[ | Streptomyces sp. OH-4156 | 对P388白血病细胞有细胞毒性,对Micrococcus luteus等有抗菌活性 |
Salinipeptins[ | Streptomyces sp. strain GSL-6C | 对Streptococcus pyogenes M1T1等有抗菌作用 | |
Thioamitides | Thioviridamide[ | Streptomyces olivoviridis NA005001 | 诱导细胞凋亡 |
Thioholgamides[ | Streptomyces malayseiense | 抗增殖活性、细胞毒性 |
Table 1 Bacterial producers and bioactivity of Avi(Me)Cys-containing peptides
亚家族 | 天然产物 | 产生菌株 | 生物活性 |
---|---|---|---|
羊毛硫肽 | Microbisporicins[ | Microbispora ATCC PTA-5024 | 对MRSA、Streptococcus pneumoniae等有抗菌活性 |
Epidermin[ | Staphylococcus epidermidis Tü 3298 | 对Mariniluteicoccus flavus、Staphylococcus simulans等有抗菌活性 | |
Mersacidin[ | Bacillus amyloliquefaciens | 对Staphylococcus aureus、MRSA等有抗菌活性 | |
Lexapeptide[ | Streptomyces rochei Sal35 | 对MRSA、MRSE等有抗菌活性 | |
Lipolanthines | Microvionin[ | Microbacterium arborescens | 对MRSA、Streptococcus pneumoniae等有抗菌活性 |
Nocavionin[ | Nocardia terpenica | 尚未报道 | |
Goadvionins[ | Streptomyces sp. TP-A0584 | 对Staphylococcus aureus、Bacillus subtilis等有抗菌活性 | |
Lipoavitides[ | Streptomyces sp. NRRL S-1521 | 溶血活性 | |
Linaridins | Cypemycin[ | Streptomyces sp. OH-4156 | 对P388白血病细胞有细胞毒性,对Micrococcus luteus等有抗菌活性 |
Salinipeptins[ | Streptomyces sp. strain GSL-6C | 对Streptococcus pyogenes M1T1等有抗菌作用 | |
Thioamitides | Thioviridamide[ | Streptomyces olivoviridis NA005001 | 诱导细胞凋亡 |
Thioholgamides[ | Streptomyces malayseiense | 抗增殖活性、细胞毒性 |
Fig. 7 Postulated mechanism for radical thiol-yne reaction for the synthesis of an AviCys derivative by Castle et al. (a) and Attempted radical thiol-yne coupling of cysteine derivative with ynamides by Castle et al. (b)AIBN—2,2′-Azobis(2-methylpropionitrile); Cbz—Carboxybenzyl; PMB—para-Methoxybenzyl
Fig. 8 Decarbonylation of thioesters to give AviMeCys derivatives and building blocks (a). Oxidative decarboxylation/decarbonylation of the C-terminal ring of mersacidin by VanNieuwenhze et al (b). Postulated mechanism of oxidative decarboxylation/decarbonylation (c)Ni(COD)2—Bis(1,5-cyclooctadiene)nickel(0); CuTC—Copper(Ⅰ) Thiophene-2-carboxylate; Cbz—Carboxybenzyl
Fig. 9 Synthesis of AviCys derivativesa via condensation of acetamide upon acetal 22 in the presence of a mild lewis acid (a) and Synthesis of the AviCys-containing ring of cypemycin via condensation of aldehyde 25 with amide (Tcp) Val-NH2, followed by elongation of the peptide chain and lactamization to give 29 in 4.6% yield from 25 (b)Pht—Phthalimide; Tcp—3,4,5,6-Tetrachlorophthalimide
1 | ARNISON P G, BIBB M J, BIERBAUM G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature[J]. Natural Product Reports, 2013, 30(1): 108-160. |
2 | MONTALBÁN-LÓPEZ M, SCOTT T A, RAMESH S, et al. New developments in RiPP discovery, enzymology and engineering[J]. Natural Product Reports, 2021, 38(1): 130-239. |
3 | SCHEIDLER C M, KICK L M, SCHNEIDER S. Ribosomal peptides and small proteins on the rise[J]. Chembiochem, 2019, 20(12): 1479-1486. |
4 | CHENG B T, XUE Y Q, DUAN Y T, et al. Enzymatic formation of an aminovinyl cysteine residue in ribosomal peptide natural products[J]. ChemPlusChem, 2024, 89(6): e202400047. |
5 | GRANT-MACKIE E S, WILLIAMS E T, HARRIS P W R, et al. Aminovinyl cysteine containing peptides: a unique motif that imparts key biological activity[J]. JACS Au, 2021, 1(10): 1527-1540. |
6 | DISCHINGER J, BASI CHIPALU S, BIERBAUM G. Lantibiotics: promising candidates for future applications in health care[J]. International Journal of Medical Microbiology, 2014, 304(1): 51-62. |
7 | HAYAKAWA Y, SASAKI K, ADACHI H, et al. Thioviridamide, a novel apoptosis inducer in transformed cells from Streptomyces olivoviridis [J]. Journal of Antibiotics, 2006, 59(1): 1-5. |
8 | CASTIGLIONE F, LAZZARINI A, CARRANO L, et al. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens[J]. Chemistry & Biology, 2008, 15(1): 22-31. |
9 | ALLGAIER H, JUNG G, WERNER R G, et al. Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic[J]. European Journal of Biochemistry, 1986, 160(1): 9-22. |
10 | CHATTERJEE S, CHATTERJEE S, LAD S J, et al. Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization[J]. Journal of Antibiotics, 1992, 45(6): 832-838. |
11 | XU M, ZHANG F, CHENG Z, et al. Functional genome mining reveals a classⅤlanthipeptide containing a D-amino acid introduced by an F420H2-dependent reductase[J]. Angewandte Chemie International Edition, 2020, 59(41): 18029-18035. |
12 | WIEBACH V, MAINZ A, SIEGERT M A J, et al. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides[J]. Nature Chemical Biology, 2018, 14(7): 652-654. |
13 | KOZAKAI R, ONO T, HOSHINO S, et al. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides[J]. Nature Chemistry, 2020, 12(9): 869-877. |
14 | REN H Q, HUANG C S, PAN Y W, et al. Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides[J/OL]. Nature Chemistry, 2024. (2024-03-25)[2024-04-01]. . |
15 | KOMIYAMA K, OTOGURO K, SEGAWA T, et al. A new antibiotic, cypemycin. Taxonomy, fermentation, isolation and biological characteristics[J]. Journal of Antibiotics, 1993, 46(11): 1666-1671. |
16 | SHANG Z, WINTER J M, KAUFFMAN C A, et al. Salinipeptins: integrated genomic and chemical approaches reveal unusual D-amino acid-containing ribosomally synthesized and post-translationally modified peptides (RiPPs) from a great salt lake Streptomyces sp[J]. ACS Chemical Biology, 2019, 14(3): 415-425. |
17 | DAHLEM C, SIOW W X, LOPATNIUK M, et al. Thioholgamide A, a new anti-proliferative anti-tumor agent, modulates macrophage polarization and metabolism[J]. Cancers, 2020, 12(5): 1288. |
18 | ONGEY E L, NEUBAUER P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production[J]. Microbial Cell Factories, 2016, 15: 97. |
19 | ONGEY E L, YASSI H, PFLUGMACHER S, et al. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies[J]. Biotechnology Letters, 2017, 39(4): 473-482. |
20 | BANERJEE B, LITVINOV D N, KANG J, et al. Stereoselective additions of thiyl radicals to terminal ynamides[J]. Organic Letters, 2010, 12(11): 2650-2652. |
21 | GARCÍA-REYNAGA P, CARRILLO A K, VANNIEUWENHZE M S. Decarbonylative approach to the synthesis of enamides from amino acids: stereoselective synthesis of the (Z)- aminovinyl-D-cysteine unit of mersacidin[J]. Organic Letters, 2012, 14(4): 1030-1033. |
22 | CARRILLO A K, VANNIEUWENHZE M S. Synthesis of the AviMeCys-containing D-ring of mersacidin[J]. Organic Letters, 2012, 14(4): 1034-1037. |
23 | LUTZ J A, SUBASINGHEGE DON V, KUMAR R, et al. Influence of sulfur on acid-mediated enamide formation[J]. Organic Letters, 2017, 19(19): 5146-5149. |
24 | LUTZ J A, TAYLOR C M. Synthesis of the aminovinylcysteine-containing C-terminal macrocycle of the linaridins[J]. Organic Letters, 2020, 22(5): 1874-1877. |
25 | KUMASHIRO M, OHSAWA K, DOI T. Photocatalyzed oxidative decarboxylation forming aminovinylcysteine containing peptides[J]. Catalysts, 2022, 12(12): 1615. |
26 | ROGERS L A, WHITTIER E O. Limiting factors in the lactic fermentation[J]. Journal of Bacteriology, 1928, 16(4): 211-229. |
27 | REPKA L M, CHEKAN J R, NAIR S K, et al. Mechanistic understanding of lanthipeptide biosynthetic enzymes[J]. Chemical Reviews, 2017, 117(8): 5457-5520. |
28 | GENG M X, SMITH L. Improving the attrition rate of Lanthipeptide discovery for commercial applications[J]. Expert Opinion on Drug Discovery, 2018, 13(2): 155-167. |
29 | BAKHTIARY A, COCHRANE S A, MERCIER P, et al. Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147[J]. Journal of the American Chemical Society, 2017, 139(49): 17803-17810. |
30 | BREUKINK E, DE KRUIJFF B. Lipid Ⅱ as a target for antibiotics[J]. Nature Reviews Drug Discovery, 2006, 5(4): 321-323. |
31 | BRÖTZ H, JOSTEN M, WIEDEMANN I, et al. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics[J]. Molecular Microbiology, 1998, 30(2): 317-327. |
32 | HSU S T D, BREUKINK E, TISCHENKO E, et al. The nisin-lipid Ⅱ complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics[J]. Nature Structural & Molecular Biology, 2004, 11(10): 963-967. |
33 | DICKMAN R, MITCHELL S A, FIGUEIREDO A M, et al. Molecular recognition of lipid Ⅱ by lantibiotics: synthesis and conformational studies of analogues of nisin and mutacin rings A and B[J]. Journal of Organic Chemistry, 2019, 84(18): 11493-11512. |
34 | POKHREL R, BHATTARAI N, BARAL P, et al. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12530-12539. |
35 | HSU S T D, BREUKINK E, BIERBAUM G, et al. NMR study of mersacidin and lipid Ⅱ interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity[J]. Journal of Biological Chemistry, 2003, 278(15): 13110-13117. |
36 | KRUSZEWSKA D, SAHL H G, BIERBAUM G, et al. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(3): 648-653. |
37 | BLAESSE M, KUPKE T, HUBER R, et al. Crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate[J]. EMBO Journal, 2000, 19(23): 6299-6310. |
38 | BLAESSE M, KUPKE T, HUBER R, et al. Structure of MrsD, an FAD-binding protein of the HFCD family[J]. Acta Crystallographica Section D, Biological Crystallography, 2003, 59(Pt 8): 1414-1421. |
39 | MO T L, YUAN H, WANG F T, et al. Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis[J]. FEBS Letters, 2019, 593(6): 573-580. |
40 | SIT C S, YOGANATHAN S, VEDERAS J C. Biosynthesis of aminovinyl-cysteine-containing peptides and its application in the production of potential drug candidates[J]. Accounts of Chemical Research, 2011, 44(4): 261-268. |
41 | LU J X, LI J, WU Y, et al. Characterization of the FMN-dependent cysteine decarboxylase from thioviridamide biosynthesis[J]. Organic Letters, 2019, 21(12): 4676-4679. |
42 | KUPKE T, KEMPTER C, JUNG G, et al. Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. Determination of substrate specificity using peptide libraries and neutral loss mass spectrometry[J]. Journal of Biological Chemistry, 1995, 270(19): 11282-11289. |
43 | XIA Y Z, YI Y C, SHI Y, et al. Enzymatic generation of thioaldehyde motifs by flavin-dependent cysteine decarboxylases for peptide bioconjugation and macrocyclization[J]. Organic Letters, 2023, 25(32): 6035-6039. |
44 | WANG S, WU K W, TANG Y J, et al. Dehydroamino acid residues in bioactive natural products[J]. Natural Product Reports, 2024, 41(2): 273-297. |
45 | BOTHWELL I R, COGAN D P, KIM T, et al. Characterization of glutamyl-tRNA-dependent dehydratases using nonreactive substrate mimics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17245-17250. |
46 | CHATTERJEE C, MILLER L M, LEUNG Y L, et al. Lacticin 481 synthetase phosphorylates its substrate during lantibiotic production[J]. Journal of the American Chemical Society, 2005, 127(44): 15332-15333. |
47 | DONG S H, TANG W X, LUKK T, et al. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold[J]. eLife, 2015, 4: e07607. |
48 | HUANG S Q, WANG Y, CAI C X, et al. Discovery of a unique structural motif in lanthipeptide synthetases for substrate binding and interdomain interactions[J]. Angewandte Chemie International Edition, 2022, 61(45): e202211382. |
49 | HERNANDEZ GARCIA A, NAIR S K. Structure and function of a class Ⅲ metal-independent lanthipeptide synthetase[J]. ACS Central Science, 2023, 9(10): 1944-1956. |
50 | SIGURDSSON A, MARTINS B M, DÜTTMANN S A, et al. Discovery of the lanthipeptide curvocidin and structural insights into its trifunctional synthetase CuvL[J]. Angewandte Chemie International Edition, 2023, 62(23): e202302490. |
51 | LIANG H Q, LOPEZ I J, SÁNCHEZ-HIDALGO M, et al. Mechanistic studies on dehydration in class Ⅴ lanthipeptides[J]. ACS Chemical Biology, 2022, 17(9): 2519-2527. |
52 | XUE Y Q, LI M, HU L, et al. Mechanistic investigations into the catalytic mode of a dehydratase complex involved in the biosynthesis of lantibiotic cacaoidin[J]. Chinese Journal of Chemistry, 2023, 41(24): 3579-3586. |
53 | LI B, YU J P, BRUNZELLE J S, et al. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis[J]. Science, 2006, 311(5766): 1464-1467. |
54 | MUKHERJEE S, VAN DER DONK W A. Mechanistic studies on the substrate-tolerant lanthipeptide synthetase ProcM[J]. Journal of the American Chemical Society, 2014, 136(29): 10450-10459. |
55 | THIBODEAUX C J, HA T, VAN DER DONK W A. A price to pay for relaxed substrate specificity: a comparative kinetic analysis of the class Ⅱ lanthipeptide synthetases ProcM and HalM2[J]. Journal of the American Chemical Society, 2014, 136(50): 17513-17529. |
56 | YANG X, VAN DER DONK W A. Michael-type cyclizations in lantibiotic biosynthesis are reversible[J]. ACS Chemical Biology, 2015, 10(5): 1234-1238. |
57 | YU Y, MUKHERJEE S, VAN DER DONK W A. Product formation by the promiscuous lanthipeptide synthetase ProcM is under kinetic control[J]. Journal of the American Chemical Society, 2015, 137(15): 5140-5148. |
58 | LU J X, LI Y Q, BAI Z B, et al. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C—S and C—C bond formation[J]. Natural Product Reports, 2021, 38(5): 981-992. |
59 | WIEBACH V, MAINZ A, SCHNEGOTZKI R, et al. An amphipathic alpha-helix guides maturation of the ribosomally-synthesized lipolanthines[J]. Angewandte Chemie International Edition, 2020, 59(38): 16777-16785. |
60 | CHU L X, CHENG J D, ZHOU C Z, et al. Hijacking a linaridin biosynthetic intermediate for lanthipeptide production[J]. ACS Chemical Biology, 2022, 17(11): 3198-3206. |
61 | XUE Y Q, WANG X F, LIU W. Reconstitution of the linaridin pathway provides access to the family-determining activity of two membrane-associated proteins in the formation of structurally underestimated cypemycin[J]. Journal of the American Chemical Society, 2023, 145(12): 7040-7047. |
62 | CLAESEN J, BIBB M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37): 16297-16302. |
63 | CLAESEN J, BIBB M J. Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350[J]. Journal of Bacteriology, 2011, 193(10): 2510-2516. |
64 | WANG F T, WEI W Q, ZHAO J F, et al. Genome mining and biosynthesis study of a type B linaridin reveals a highly versatile α-N-methyltransferase[J]. CCS Chemistry, 2020, 3(3): 1049-1057. |
65 | GEORGIOU M A, DOMMARAJU S R, GUO X R, et al. Bioinformatic and reactivity-based discovery of linaridins[J]. ACS Chemical Biology, 2020, 15(11): 2976-2985. |
66 | LU J X, WU Y, LI Y Q, et al. The utilization of lanthipeptide synthetases is a general strategy for the biosynthesis of 2-aminovinyl-cysteine motifs in thioamitides[J]. Angewandte Chemie International Edition, 2021, 60(4): 1951-1958. |
67 | DENOËL T, LEMAIRE C, LUXEN A. Progress in lanthionine and protected lanthionine synthesis[J]. Chemistry, 2018, 24(58): 15421-15441. |
68 | JIMÉNEZ J C, BAYÓ N, CHAVARRÍA B, et al. Synthesis of peptides containing α,β-didehydroamino acids. Scope and limitations[J]. Letters in Peptide Science, 2002, 9(2): 135-141. |
[1] | Haotian ZHENG, Chaofeng LI, Liangxu LIU, Jiawei WANG, Hengrun LI, Jun NI. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[2] | Xiaolei CHENG, Tiangang LIU, Hui TAO. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071. |
[3] | Haoran YANG, Farong YE, Ping HUANG, Ping WANG. Recent advances in glycoprotein synthesis [J]. Synthetic Biology Journal, 2024, 5(5): 1072-1101. |
[4] | Zijian LIU, Baiyang MU, Zhiqiang DUAN, Xuan WANG, Xiaojie LU. Advances in the development of DNA-compatible chemistries [J]. Synthetic Biology Journal, 2024, 5(5): 1102-1124. |
[5] | Shouqi ZHANG, Tao WANG, Yao KONG, Jiasheng ZOU, Yuanning LIU, Zhengren XU. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. |
[6] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[7] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[8] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[9] | Xuchang YU, Hui WU, Lei LI. Library construction and targeted BGC screening for more efficient discovery of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 492-506. |
[10] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[11] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[12] | Ru LEI, Hui TAO, Tiangang LIU. Deep genome mining boosts the discovery of microbial terpenoids [J]. Synthetic Biology Journal, 2024, 5(3): 507-526. |
[13] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[14] | Rui ZHANG, Wenzheng JIN, Yijun CHEN. Bacterial inter-PKS hybrids and the biosynthetic algorithm of polyketides [J]. Synthetic Biology Journal, 2024, 5(3): 548-560. |
[15] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||