Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (5): 821-825.DOI: 10.12211/2096-8280.2022-049
Previous Articles Next Articles
Received:2022-09-09
															
							
																	Revised:2022-09-19
															
							
															
							
																	Online:2022-11-16
															
							
																	Published:2022-10-31
															
						孙韬1,2,3, 张卫文1,2,3, 胡章立4,5, 元英进1,3
作者简介:CLC Number:
孙韬, 张卫文, 胡章立, 元英进. 合成生物学助力碳中和:新底盘、新策略与新技术[J]. 合成生物学, 2022, 3(5): 821-825.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-049
| 1 | 央视新闻. 碳达峰与碳中和[EB/OL] (2021-03-10)[2022-09-09]. . | 
| 2 | 央视. 中美发表应对气候危机联合声明[EB/OL] (2021-04-18)[2022-09-09]. . | 
| 3 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. | 
| 4 | KANNO M, CARROLL A L, ATSUMI S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria[J]. Nature Communications, 2017, 8: 14724. | 
| 5 | LAN E I, LIAO J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. | 
| 6 | SUN T, LI S B, SONG X Y, et al. Toolboxes for cyanobacteria: Recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307. | 
| 7 | LIEW F E, NOGLE R, ABDALLA T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale[J]. Nature Biotechnology, 2022, 40(3): 335-344. | 
| 8 | WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642. | 
| 9 | SCHUCHMANN K, MÜLLER V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase[J]. Science, 2013, 342(6164): 1382-1385. | 
| 10 | ZHENG T T, ZHANG M L, WU L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5(5): 388-396. | 
| 11 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. | 
| 12 | 杨健钊, 朱新广. 面向碳达峰与碳中和的植物合成生物学[J]. 合成生物学, 2022, 3(5): 847-869. | 
| YANG J Z, ZHU X G. Plant synthetic biology for carbon peak and carbon neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 847-869. | |
| 13 | 盛阳阳, 徐秀美, 张巧红, 等. 光合作用碳同化的合成生物学研究进展[J]. 合成生物学, 2022, 3(5): 870-883. | 
| SHENG Y Y, XU X M, ZHANG Q H, et al. Advances in synthetic biology for photosynthetic carbon assimilation[J]. Synthetic Biology Journal, 2022, 3(5): 870-883. | |
| 14 | 史梦琳, 周琳, 王庆, 等. 植物二氧化碳代谢途径改造研究进展[J]. 合成生物学, 2022, 3(5): 985-1005. | 
| SHI M L, ZHOU L, WANG Q, et al. Advances in the study on the modification of carbon dioxide metabolic pathways in plants[J]. Synthetic Biology Journal, 2022, 3(5): 985-1005. | |
| 15 | 肖璐, 李寅. 生物固碳:从自然生物到人工合成[J]. 合成生物学, 2022, 3(5): 833-846. | 
| XIAO L, LI Y. Biological carbon fixation: from natural to synthetic[J]. Synthetic Biology Journal, 2022, 3(5): 833-846. | |
| 16 | JAISWAL D, SAHASRABUDDHE D, WANGIKAR P P. Cyanobacteria as cell factories: The roles of host and pathway engineering and translational research[J]. Current Opinion in Biotechnology, 2022, 73: 314-322. | 
| 17 | 赵权宇. 面向碳中和的微藻适应性实验室进化研究进展[J]. 合成生物学, 2022, 3(5): 901-914. | 
| ZHAO Q Y. Research progress in carbon neutrality oriented adaptive laboratory evolution of microalgae[J]. Synthetic Biology Journal, 2022, 3(5): 901-914. | |
| 18 | 孙中亮, 陈辉, 王强. 从CO2到有机物——碳中和的微藻绿色生物制造[J]. 合成生物学, 2022, 3(5): 953-965. | 
| SUN Z L, CHEN H, WANG Q. From CO2 to value-added products—carbon neutral microalgal green biomanufacturing[J]. Synthetic Biology Journal, 2022, 3(5): 953-965. | |
| 19 | 崔金玉, 张爱娣, 栾国栋, 等. 微藻光驱固碳合成技术的发展现状与未来展望[J]. 合成生物学, 2022, 3(5): 884-900. | 
| CUI J Y, ZHANG A D, LUAN G D, et al. Engineering microalgae for photosynthetic biosynthesis: progress and prospect[J]. Synthetic Biology Journal, 2022, 3(5): 884-900. | |
| 20 | 王松, 吴莎, 江亚男, 等. 微藻光合作用的优化升级助力“双碳”目标[J]. 合成生物学, 2022, 3(5): 915-931. | 
| WANG S, WU S, JIANG Y N, et al. Optimization and upgradation of microalgal photosynthesis for carbon peaking and carbon neutrality goals[J]. Synthetic Biology Journal, 2022, 3(5): 915-931. | |
| 21 | 陶飞, 孙韬, 王钰, 等. “双碳”背景下聚球藻底盘研究的挑战与机遇[J]. 合成生物学, 2022, 3(5): 932-952. | 
| TAO F, SUN T, WANG Y, et al. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 932-952. | |
| 22 | 董正鑫, 孙韬, 陈磊, 等. 调控工程在光合蓝细菌中的应用[J]. 合成生物学, 2022, 3(5): 966-984. | 
| DONG Z X, SUN T, CHEN L, et al. Applications of regulatory engineering in photosynthetic cyanobacteria[J]. Synthetic Biology Journal, 2022, 3(5): 966-984. | |
| 23 | 由紫暄, 李锋, 宋浩. 电能细胞的合成生物学设计构建[J]. 合成生物学, 2022,3(5): 1031-1059. | 
| YOU Z X, LI F, SONG H. Design and construction of electroactive cells by synthetic biology strategies[J]. Synthetic Biology Journal, 2022, 3(5): 1031-1059. | |
| 24 | 崔馨予, 吴冉冉, 王园明, 等. 酶促生物电催化系统的设计构建与强化[J]. 合成生物学, 2022, 3(5): 1006-1030. | 
| CUI X Y, WU R R, WANG Y M, et al. Construction and enhancement of enzymatic bioelectrocatalytic systems[J]. Synthetic Biology Journal, 2022, 3(5): 1006-1030. | |
| 25 | 刘建明, 曾安平. 无细胞多酶分子机器赋能二氧化碳的高值利用及其挑战[J]. 合成生物学, 2022, 3(5): 825-832. | 
| LIU J M, ZENG A P. Cell-free multi-enzyme machines for CO2 capture, utilization and its associated challenges[J]. Synthetic Biology Journal, 2022, 3(5): 825-832. | 
| [1] | Yang SUN, Lichao CHEN, Yanyun SHI, Ke WANG, Dandan LU, Xiumei XU, Lixin ZHANG. Strategies and prospects of synthetic biology in crop photosynthesis [J]. Synthetic Biology Journal, 2025, (): 1-16. | 
| [2] | Naicai ZHONG, Yuan CHEN, Wenfeng PAN, Xiaofeng SU, Jingwen LIAO, Jinyi ZHONG. Application progress of plasma microbial breeding technology in biofabrication [J]. Synthetic Biology Journal, 2025, (): 1-17. | 
| [3] | Zeyan DI, Shuo ZHOU, Mingfang YANG, Xin LIU, Yao CHEN. Application of functional framework materials in C1 biotransformation [J]. Synthetic Biology Journal, 2025, (): 1-18. | 
| [4] | Chengxin ZHANG. Challenges and opportunities in text mining-based protein function annotation [J]. Synthetic Biology Journal, 2025, (): 1-14. | 
| [5] | Yuanxu JIANG, Yingying FAN, Ping WEI. Design principles and artificial synthesis of biological oscillators [J]. Synthetic Biology Journal, 2025, (): 1-15. | 
| [6] | Shuhan HUANG, He MA, Yunzi LUO. Research progress on biosynthesis of salidroside [J]. Synthetic Biology Journal, 2025, (): 1-16. | 
| [7] | Qian LI, E. Ferrell James, Yuping CHEN. Cytoplasmic concentration: an old question and a new parameter in cell biology [J]. Synthetic Biology Journal, 2025, (): 1-18. | 
| [8] | Baiyi Jiang, Long Qian. Application and prospect of live cell molecular recorder in cell lineage tracing [J]. Synthetic Biology Journal, 2025, (): 1-17. | 
| [9] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. | 
| [10] | WEN Yanhua, LIU Hedong, CAO Chunlai, WU Ruibo. Applications of protein engineering in pharmaceutical industry [J]. Synthetic Biology Journal, 2025, 6(1): 65-86. | 
| [11] | ZHONG Quanzhou, SHAN Yiyi, PEI Qingyun, JIN Yanyun, WANG Yihan, MENG Luyuan, WANG Xinyun, ZHANG Yuxin, LIU Kunyuan, WANG Huizhong, FENG Shangguo. Research progress in the production of α-arbutin through biosynthesis [J]. Synthetic Biology Journal, 2025, 6(1): 118-135. | 
| [12] | ZHANG Yi-Heng P. Job, CHEN Xuemei, SHI Ting. Price to Cost-of-raw-materials Ratio (PC) of biomanufacturing: definition and application [J]. Synthetic Biology Journal, 2025, 6(1): 8-17. | 
| [13] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. | 
| [14] | DONG Ying, MA Mengdan, HUANG Weiren. Progress in the miniaturization of CRISPR-Cas systems [J]. Synthetic Biology Journal, 2025, 6(1): 105-117. | 
| [15] | LIU Xiaoyue, WANG Pandi, WU Gang, LIU Fang. Efficient biosynthesis of glucoraphanin in Brassicaceae crops by genetic engineering [J]. Synthetic Biology Journal, 2025, 6(1): 136-156. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||