阅读排行

    一年内发表文章 |  两年内 |  三年内 |  全部
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 近十年天然产物药物的生物合成研究进展
    冯金, 潘海学, 唐功利
    合成生物学    2024, 5 (3): 408-446.   DOI: 10.12211/2096-8280.2023-092
    摘要5645)   HTML531)    PDF(pc) (9525KB)(3890)    收藏

    天然产物一直是潜在的先导药物的重要来源,天然产物及其结构类似物在历史上对疾病治疗做出了重大贡献,特别是对癌症和传染病的治疗。在过去两百年的时间里,天然产物的发现和研究经历了巨大的变化,由传统的分离鉴定为主的经典研究方法转为了基因组时代的多学科组合研究。虽然近二十年发现和挖掘了丰富的活性天然产物,但与自然界中巨大的天然产物合成潜力相比仍有不足,庞大的陆地和海洋天然产物资源尚待开发。同时,与传统的化学合成分子相比,天然产物具有丰富的骨架多样性和结构复杂性,在新药发现中展现了巨大的优势。虽然在天然产物的新药创新方面仍面临着种种挑战,但新的分析技术和挖掘策略的出现有望迎来天然产物发现的新阶段。本文总结了近十年(2014年1月—2023年10月)美国食品药品监督管理局批准成药的天然产物及源自天然产物的半合成药物,并对其中纯天然产物来源分子、重要的半合成天然产物前体的生物合成研究进展进行了详细总结。此外还简要总结了一些FDA批准的老药在过去十年中取得的重要生物合成研究进展。期望通过对成药天然产物生物合成途径及机制的深入理解,为更多天然产物创新药物的发现和研究提供借鉴。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 木质素的生物降解和生物利用
    刘宽庆, 张以恒
    合成生物学    2024, 5 (6): 1264-1278.   DOI: 10.12211/2096-8280.2023-062
    摘要3043)   HTML241)    PDF(pc) (2325KB)(2148)    收藏

    木质素是木质纤维素的主要成分之一,按干重计约占15%~30%,全球年产量约200亿吨。木质素是由苯丙烷单元通过多种不同的碳碳键和碳氧键构成的一类芳香族高聚化合物,是高等陆生植物次生细胞壁的主要成分,赋予了植物刚性并保护植物体免受微生物的入侵。由于木质素产量巨大、可再生,近些年全球对木质素利用的兴趣持续升高。但是木质素的成分复杂,无论是其降解还是后续的利用都充满了挑战,因此目前多用作燃料。在众多木质素降解利用的方法中,生物法反应条件温和、绿色环保,近些年在绿色可持续发展的大背景下受到广泛关注。本文介绍了自然界中催化木质素降解的关键酶:漆酶、锰过氧化物酶、木质素过氧化物酶、染料脱色过氧化物酶、多功能过氧化物酶等,同时简要介绍了其催化机制。并总结了生物利用木质素类芳香族化合物过程中涉及的四个主要反应:O-脱甲基、脱羧、羟基化和双加氧酶介导的开环反应,以及相关的酶和催化机制。最后,简要介绍了利用合成生物学手段构建细胞工厂实现木质素高值利用的案例。木质素的生物降解和利用是一个极具潜力的领域,同时也存在诸多的挑战,例如转化效率低、反应时间长等。但相信随着合成生物学的迅猛发展,利用高效基因编辑和代谢工程改造提高关键酶的反应速率和代谢通路的效率、提高底盘细胞对有毒芳香族化合物的抵抗能力、维持还原力的平衡等,将有效提高木质素生物降解利用的效率,其工业应用也许在不久的将来就会实现。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 紫杉醇生物合成机制研究进展
    刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋
    合成生物学    2024, 5 (3): 527-547.   DOI: 10.12211/2096-8280.2023-085
    摘要2773)   HTML305)    PDF(pc) (2052KB)(1697)    收藏

    紫杉醇是目前已发现的最具抗癌活性的天然广谱抗癌药物之一,其生产方式主要依赖于从珍稀植物红豆杉中进行分离提取以及化学半合成,因其含量稀少,生产能力受到严重的限制。随着红豆杉基因组的全解析和合成生物学的迅速发展,通过合成生物技术,构建重组工程细胞合成紫杉醇及其关键前体成为解决当前供需不平衡和资源有限的有效方法。本文针对紫杉醇生物合成途径解析、红豆杉组学分析、底盘细胞构建、关键前体合成、紫杉醇合成途径关键酶的改造及催化机理解析等相关研究进展开展系统性的综述,尤其对近期发表的关于氧杂环丁烷环形成的相关突破性研究进行了详细介绍,并基于相关进展探讨当前紫杉醇合成生物学研究面临的关键酶催化效率低下、产物杂泛性严重、具体反应顺序未知等技术挑战及生物合成紫杉醇关键中间体的未来前景。助力加强对紫杉醇合成通路和催化过程的理解,进一步实现紫杉醇的绿色、高效生物合成。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 基因组挖掘指导天然药物分子的发现
    奚萌宇, 胡逸灵, 顾玉诚, 戈惠明
    合成生物学    2024, 5 (3): 447-473.   DOI: 10.12211/2096-8280.2023-086
    摘要2206)   HTML243)    PDF(pc) (5166KB)(1540)    收藏

    天然产物是临床药物的主要来源,也是新药研发过程中先导化合物结构设计和优化的灵感源泉。但传统策略天然药源分子的发现却遭遇了瓶颈,新颖天然产物的数量逐渐无法满足现代药物开发的需求和应对全球多药耐药的威胁。随着测序技术的快速迭代,生物学的研究进入了基因组时代,基因组挖掘指导天然产物定向发现的策略得以确立,成功摆脱了传统天然产物发现策略对于生物样本生物量的依赖,极大提高了活性天然产物发现的特异性和成功率。本文简述了基因组挖掘以及相关数据库和生物信息学工具的发展,详细介绍了包括基于核心基因或后修饰基因的经典挖掘手段,自抗性机制、进化理论指导的基因组挖掘和人工智能在活性天然产物发现中的具体应用,并对基因组挖掘在药物发现和多学科交叉领域的影响和发展进行了展望。基因组信息中蕴藏着无可估量的化学潜能,促进基因组挖掘与其他学科间的交叉融合,提升对遗传信息的处理和分析能力,增强下游基因簇表达通量和产物结构预测能力,可实现天然小分子高通量、高新颖性和高效率的发现,为开发具有自主知识产权的新药物、新化学品和新型酶催化剂服务。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 萜类化合物的非常规生物合成研究进展
    程晓雷, 刘天罡, 陶慧
    合成生物学    2024, 5 (5): 1050-1071.   DOI: 10.12211/2096-8280.2024-006
    摘要1906)   HTML191)    PDF(pc) (4063KB)(1607)    收藏

    萜类化合物是自然界中广泛存在的一类具有重要生理功能和显著生物活性的天然产物,在食品、医疗及日化行业有着广泛的应用。在萜类化合物的生物合成途径中,萜类合酶往往决定了萜类碳骨架的种类和结构新颖性,细胞色素P450酶等后修饰酶则可对碳骨架进行多种修饰,最终形成结构和功能都具有丰富多样性的萜类化合物。近年来,随着基因测序技术与合成生物学的发展,大量植物和微生物来源的萜类生物合成酶被表征,令人兴奋的是,其中包含一些与经典萜类合酶不同的非常规萜类合酶,它们亦可催化生成独特的环化萜类骨架。与此同时,利用组合生物合成等策略,人们创造了许多新颖的非天然萜类化合物,进一步丰富了萜类资源库。本文综述了近5年在非常规萜类环化酶与组合生物合成途径等方面取得的最新研究进展,以期为未来新型萜类化合物的发现和生物合成提供启示。本文首先综述了新发现的具有萜类环化功能的新酶,包含Ⅰ型萜类合酶新亚族、非角鲨烯来源三萜合酶、UbiA型萜类环化酶、细胞色素P450氧化酶、甲基转移酶、钒依赖卤素过氧化物酶、卤代酸脱卤酶等,同时还对其序列、功能和可能的环化机制进行了介绍,有助于理解自然界中萜类生物合成酶的进化起源和发现新颖萜类化合物。然后,本文介绍了非常规萜类衍生物的组合生物合成,通过将萜类合酶与甲基转移酶、天然或人工细胞色素P450氧化酶进行组合,产生了一系列包含非常规C11、C16骨架以及具有不同氧化形式的非天然萜类化合物,可为往后萜类化合物的结构创新研究带来启发。这些新颖酶元件的挖掘与新型组合生物合成途径的构建,将进一步拓宽萜类化合物的结构多样性和化学空间,有望为临床萜类药物研发提供更多的潜在小分子。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 中国哲学思想“道法术器”对生物制造的启示
    张以恒
    合成生物学    2024, 5 (6): 1231-1241.   DOI: 10.12211/2096-8280.2023-066
    摘要1785)   HTML248)    PDF(pc) (1617KB)(1724)    收藏

    生物制造是利用生物体(如植物、动物、微生物、酶、体外多酶分子机器等)的机能进行物质加工与合成的绿色生产方式,将在能源、农业、化工和医药等领域改变世界工业制造格局,是科技战必争之地。作者应用中国古代哲学的“道、法、术、器”思想“道以明向,法以立本,术以立策,器以成事”,对工业生物制造的道与法进行解释与剖析,阐明顶层设计对生物制造的哲学指导意义。以美国合成生物学先驱公司Amyris为例,作者分析与讨论该公司产品选择以及隐含“道与法”,尽管该公司具有优秀“术与器”,但是走错道与不懂法决定该公司的失败命运。同时,作者简单地讨论两个人工淀粉合成技术的经济可能性与未来技术研发方向。总之,中国古代哲学思想“大道至简,从上而下,以道御术”,将对工业生物制造的未来发展提供顶层设计方法学上的启发与指导,将更有效地应对粮食安全、双碳目标与可持续发展等重大挑战。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基因组深度挖掘驱动微生物萜类化合物高效发现
    雷茹, 陶慧, 刘天罡
    合成生物学    2024, 5 (3): 507-526.   DOI: 10.12211/2096-8280.2023-098
    摘要1732)   HTML156)    PDF(pc) (3116KB)(1514)    收藏

    萜类天然产物广泛分布于动物(包括海洋无脊椎动物)、植物、微生物中,具有复杂的化学结构和丰富的生物活性。人们通过从植物和微生物中直接分离提取的方式获得了大量萜类天然产物,然而随着越来越多化合物被发现,使用基于自然筛选的传统挖掘方式很难获得新的萜类天然产物。随着基因组测序技术和合成生物学使能技术的不断发展,我们进入了基因组挖掘驱动天然产物发现的时代,萜类天然产物的挖掘也进入了“井喷式”发现新阶段。针对基因组挖掘在微生物萜类天然产物发现方面的应用,本文综述了近年来使用的主要研究策略和最新研究进展,介绍了多种高效微生物底盘、基因组深度挖掘策略、人工智能与自动化平台等驱动的萜类化合物挖掘的最新研究进展,讨论了基因组挖掘萜类天然产物面临的挑战,展望了未来萜类化合物创新发现的发展趋势。通过在多种微生物中强化前体供应途径,人们打造了多个萜类化合物合成底盘,突破了异源合成萜类天然产物时“产量低”和“产物难获取”的瓶颈;针对萜类天然产物生物合成基因簇或萜类合酶进行深度挖掘,可以有效地解决“重复发现”和“集中度低”的难题;随着人工智能和自动化技术在合成生物学领域的发展和应用,萜类化合物的发现也进入了高通量智能发现时期,显著地改善了“研究通量低”的现状,高效获得了大量新结构萜类天然产物。在未来,更多萜类化合物将开发成药物、进入工业化生产应用,更多萜类“暗物质”会走进我们视野。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 天然产物的化学-酶法合成:方法与策略的演进
    张守祺, 王涛, 孔尧, 邹家胜, 刘元宁, 徐正仁
    合成生物学    2024, 5 (5): 913-940.   DOI: 10.12211/2096-8280.2024-028
    摘要1569)   HTML123)    PDF(pc) (5090KB)(1526)    收藏

    天然产物是小分子药物和探针的重要来源,其合成研究一直以来是有机合成中一个备受关注而又极具挑战性的领域。随着色谱分离技术和结构分析技术的不断发展,微量活性天然产物的发现速度不断加快,其结构的多样性和复杂性也不断增加,而对其构效关系、靶标鉴定、体内活性等方面的研究则需要供应足够量的天然产物,因而对天然产物的合成在效率、经济性和规模等方面都提出了更高的要求。化学-酶法的方式为天然产物的合成研究提供了多维的视角,一方面提供了高效高选择性的酶催化合成方法,另一方面,酶催化反应的引入可以给原先合成策略的设计模式带来突破,并快速、高效地实现天然产物的多样化合成,从而成为近期研究的热点。其中酶催化反应如何有机地整合到天然产物的合成中便成为目前化学-酶法合成成功的关键,本文从当前天然产物化学-酶法的合成实践中总结了酶催化反应所发挥的三方面作用:①对合成起点的改变,即酶催化反应可以在合成原料中引入关键的手性中心或官能团,以体外酶促或体内发酵的方式提供复杂的合成前体,如多取代芳(杂)环、手性池等;②合成后期通过酶催化方式对多官能团底物或复杂骨架的惰性位置进行化学、区域和立体选择性的官能团化;③酶催化反应作为关键步骤在母核骨架构建中关键碳碳键形成方面的策略性应用。最后,本文从合成策略的设计、合成方法的开发以及研究人员思维等三个方面讨论了化学-酶法策略在当下所面临的挑战和未来的发展趋势。在此背景下,化学合成与生物催化等多学科手段的深度交叉融合将为天然产物的合成科学带来新的活力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 细菌聚酮合酶间的杂合方式及聚酮化合物生物合成逻辑
    张瑞, 金文铮, 陈依军
    合成生物学    2024, 5 (3): 548-560.   DOI: 10.12211/2096-8280.2023-090
    摘要1447)   HTML90)    PDF(pc) (2302KB)(733)    收藏

    聚酮化合物(polyketide)是一类来源广泛、结构多样的活性天然产物,聚酮合酶(polyketide synthase, PKS)负责聚酮骨架的生物合成。细菌次级代谢中PKS广泛存在,不同类型的PKS在组成和生物合成机制上各不相同,从而产生截然不同的聚酮骨架。根据细菌PKS功能和生物合成途径的不同,可以将其分为Ⅰ型、Ⅱ型和Ⅲ型。PKS通常能与其他生物合成酶系杂合以产生结构更为复杂的天然产物。同时,不同类型PKS之间也可以形成多种内部杂合,产生更多样的聚酮骨架。本文总结和比较PKS间的内部杂合,包括Ⅰ型PKS内部杂合、Ⅰ型/Ⅱ型PKS杂合以及Ⅰ型/Ⅲ型PKS杂合,归纳各种杂合基因簇的形成方式及其杂合特征。通过比较杂合聚酮化合物的生物合成机制并讨论杂合聚酮工程化改造的进展,展望了多种潜在的聚酮杂合模式,合理假设存在合成过程相反的Ⅰ型/Ⅱ型PKS杂合模式,或随着化合物的挖掘发现迄今未报道的Ⅱ型/Ⅲ型PKS杂合模式等,指出可以充分和全面地利用细菌基因组信息,通过酶和基因的生物勘探,发现更多更特殊的PKS杂合化合物等一系列针对新颖聚酮化合物进行基因组挖掘的方向,同时也提出了工程化改造trans-AT PKS在cis-AT模块中实现不同寻常的骨架修饰等多种PKS的工程化改造设想,为后续PKS内部杂合基因簇挖掘和表征提供一些新思路。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 体外生物转化(ivBT):生物制造的新前沿
    石婷, 宋展, 宋世怡, 张以恒
    合成生物学    2024, 5 (6): 1437-1460.   DOI: 10.12211/2096-8280.2024-004
    摘要1358)   HTML171)    PDF(pc) (2717KB)(1725)    收藏

    人类社会的重大挑战(如粮食安全、能源安全、气候变化与双碳目标等)驱动全社会寻求创新型技术解决方案。体外生物转化(in vitro biotransformation,ivBT)是介于微生物发酵与酶催化之间的新质生物制造平台,多酶分子机器是其超限生物催化剂。它基于大道至简原则,利用多个天然酶、人工酶以及(仿生/天然)辅酶等重构生化途径,摆脱生物体生存局限(如细胞复制、基础代谢、复杂调控和能量供给等),超越细胞合成极限,实现重要生物转化与超限能量转换,尤其是生产低值大宗产品与新能源产品等。工业生物制造的三个平台技术分别是基于细胞工厂的发酵、基于酶分子的生物催化与基于多酶分子机器的ivBT。本综述对ivBT给出明确定义,阐明其多酶途径设计原则与产业化技术研发路径,比较该平台与现有生物制造平台相似性与不同点,介绍多个代表性案例,以及讨论其未来的机会与挑战。ivBT技术发展采用设计-构建-判决-优化的线性策略,开发能够满足国家需求的超高效多酶分子机器。利用ivBT有望形成超过30万亿元生物产品的工业生物制造,助力实现人类社会的多项重要需求,如粮食安全、新型能源体系等。人造淀粉不仅可以帮助中国端牢粮食饭碗,而且将是一个全新且安全的高密度储氢载体(比压缩氢气高2.5倍)与高能储电介质(比锂电池高10倍)。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 合成基因线路的工程化设计研究进展与展望
    高歌, 边旗, 王宝俊
    合成生物学    2025, 6 (1): 45-64.   DOI: 10.12211/2096-8280.2023-096
    摘要1356)   HTML159)    PDF(pc) (3188KB)(1721)    收藏

    合成基因线路利用合成生物学的技术和方法,将生物元件进行重新设计与构建,使人工设计的生物分子线路在活细胞中行使特定生物功能,在生物制造、医疗健康以及环境监测等领域具有巨大的潜力。但其工程化设计仍受到各种因素的制约,包括正交元器件数量有限、大规模线路组装困难、线路行为预测性低等。根据研究者们开发的各种调控元件工具箱和组装方法,本文逐点阐述了工程化设计基因线路所需遵循的几个核心原则:正交化、标准化、模块化与自动化。文章从DNA复制、转录和翻译层面介绍了正交基因元件库的构建和改造方法;全面总结了基因元件的标准化定量表征方法与标准元件设计方法;并介绍了本团队与其他团队在模块化基因线路设计方面的相关进展;分别从软件、硬件和人工智能角度展示如何实现基因线路的自动化设计。最后,本文探讨了基因线路设计的未来发展趋势,指出需要进一步融合人工智能和自动化等信息技术来加速基因线路“设计-构建-测试-学习”循环的迭代,提高线路设计的功能可预测性和复杂性,高效设计出符合目标需求的人造生命体。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 重要甾体化合物的化学酶法合成研究进展
    郑梦梦, 刘犇犇, 林芝, 瞿旭东
    合成生物学    2024, 5 (5): 941-959.   DOI: 10.12211/2096-8280.2024-002
    摘要1342)   HTML130)    PDF(pc) (3921KB)(1193)    收藏

    甾体化合物因其多功能生物活性和理化特性备受生物医药行业的高度重视,被誉为自然界的“生命之钥”。随着植物甾醇代谢途径的不断解析,国内逐渐形成了“植物甾醇原料-甾体药物中间体-甾体药物”的工业合成路线。日益发展的甾药行业需要不断开发新的合成技术推进甾体药物自上而下高效合成。基于生物信息学、合成生物学、代谢工程以及酶工程的快速发展,甾体化合物的合成技术也取得了重大突破。本文对重要甾体化合物的最新合成进展,包括甾体药物中间体的多样化合成、复杂甾体的化学酶法合成和酵母从头合成植物甾醇原料等方面进行了综述,特别强调了近年来P450羟化酶、3-甾酮-Δ1-脱氢酶、还原酶以及酶级联参与的化学酶法在高效简易合成复杂甾体药物中的代表性工作;在此基础上,也从新一代甾药中间体的开发、新型甾体生物催化剂的挖掘、以分枝杆菌为底盘的甾体合成途径的构建等方面对甾体化合物未来的研究机会和挑战进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用
    汤志军, 胡友财, 刘文
    合成生物学    2024, 5 (3): 401-407.   DOI: 10.12211/2096-8280.2023-081
    摘要1337)   HTML101)    PDF(pc) (2220KB)(952)    收藏

    4+2和2+2环加成反应均是构筑环结构的重要有机化学反应,在复杂天然产物、手性药物的化学合成和生物合成方面有广泛的应用。发现、发展包括4+2和2+2在内的酶促环加成反应,是当前化学生物学研究的热点之一。近期,国际、国内研究团队相继报道了多个酶促4+2和2+2环加成反应,解析了环化酶的蛋白结构和催化机制,设计了新的环化酶,或通过定向进化实现了不同类型环加成反应的区域和立体选择性调控。相关研究为采用合成生物学的策略设计和优化新型环加成酶提供了理论基础和成功范例,有利于促进酶促反应在有机合成领域的应用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 文库构建与基因簇靶向筛选驱动的微生物天然产物高效发现
    虞旭昶, 吴辉, 李雷
    合成生物学    2024, 5 (3): 492-506.   DOI: 10.12211/2096-8280.2023-083
    摘要1184)   HTML91)    PDF(pc) (1961KB)(571)    收藏

    微生物天然产物作为小分子药物的主要来源,已被广泛应用于医药与农业等领域。随着全球抗生素耐药性与其他公共健康问题的加剧,新结构、新靶点微生物天然产物发现迫在眉睫。大规模(宏)基因组测序揭示微生物蕴含了巨大的生物合成潜力,相继催生了多种不同类型的天然产物挖掘策略。然而,目前仍然缺乏将天然产物合成基因簇与编码产物快速关联的高效方案。近年来,(宏)基因组文库构建在获取批量天然产物合成基因簇方面展现出明显优势,结合高效的基因簇靶向筛选方法,显著加速了新结构天然产物系统发现。本文综述了三类基于(宏)基因组文库构建与靶向筛选驱动天然产物创新发现的策略,主要从克隆载体类型、文库构建方式、基因簇靶向筛选方法等角度进行了阐述,并对Cosmid/Fosmid文库、BAC/PAC文库、FAC/YAC文库等不同文库类型的优缺点及应用范围进行了对比,最后对这些策略的发展前景进行了展望。未来,基于文库构建与基因簇靶向筛选策略将极大驱动不同生境微生物来源的活性天然产物挖掘,预期大量新靶点、新结构天然产物将不断涌现。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 合成生物学助力化妆品走进生物制造新时代
    张璐鸥, 徐丽, 胡晓旭, 杨滢
    合成生物学    DOI: 10.12211/2096-8280.2024-056
    录用日期: 2024-10-09

    16. 血管化类器官的构建方法及生物材料
    李石开, 曾东鳌, 杜方舟, 张京钟, 余爽
    合成生物学    2024, 5 (4): 851-866.   DOI: 10.12211/2096-8280.2023-104
    摘要1118)   HTML46)    PDF(pc) (1931KB)(592)    收藏

    类器官血管化是完善类器官结构、功能及支持其体外长期存活的关键问题。近年来,随着类器官培养及生物工程技术的发展,类器官血管化有了长足的进步。本文综述了血管化类器官领域的最新进展,总结了目前用于血管化的构建策略与方法,包括干细胞共分化、多细胞共培养、微血管片段,移植后体内再血管化等生物技术,以及微制造、静电纺丝、三维生物打印、微流控技术等工程技术手段在血管化类器官方面的应用。血管化类器官的构建通常会辅以生物材料来负载血管化相关因子或提供不同类型细胞生长的微环境,本文对构建血管化类器官中应用的天然及合成生物材料也做了相应讨论。虽然类器官血管化目前还存在一定的局限性,但随着对血管化关键机制的解析及生物工程技术的进步,多种构建方法及生物材料的联合应用,将极大促进结构及功能完善的血管化类器官构建,并实质性地推动类器官技术在基础及临床医学领域的应用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 自抗性基因导向的活性天然产物挖掘
    宋永相, 张秀凤, 李艳芹, 肖华, 闫岩
    合成生物学    2024, 5 (3): 474-491.   DOI: 10.12211/2096-8280.2023-099
    摘要1109)   HTML76)    PDF(pc) (3939KB)(727)    收藏

    天然产物是医药与农药的重要来源。基因组测序和生物信息学分析技术的飞速发展,揭示了大量功能未知的天然产物生物合成基因簇,利用生物信息学工具,从这些庞大的基因簇数据中挖掘活性天然产物已经成为发现新型天然药物的重要途径。天然产物的生产者们利用自抗性基因所表达的自抗性酶来保护自身,这种自抗性酶是体内一些初级代谢途径中管家酶的变体,不但对于活性天然产物具有较好的耐受性,还可以在生产活性天然产物的同时确保宿主体内代谢的正常进行。因而,自抗性基因指导的天然产物研究有效地将活性导向和基因组导向的天然产物发掘策略桥连起来,为精准发掘具有目标活性的新型天然产物提供了有效策略。本文对利用自抗性基因作为探针进行天然产物发掘的代表性研究工作进行了整理和总结,并对研究趋势进行了展望,主要包括:①对于活性已知的天然产物,利用其自抗性基因来定位生物合成基因簇的研究;②以天然产物生物合成基因簇中的自抗性基因为线索,预测产物的作用靶点的研究;③利用天然产物自抗性机制,将具有已知作用机制的活性分子进行快速排重的研究;④利用自抗性基因与天然产物及其活性的内在联系,以目标靶点导向的活性天然产物基因组挖掘;⑤自抗性基因导向的基因组数据挖掘工具的发展情况。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. CRISPR/Cas基因编辑及其新兴技术在丝状真菌研究中的系统应用
    陈盈盈, 刘扬, 史俊杰, 马俊英, 鞠建华
    合成生物学    2024, 5 (3): 672-693.   DOI: 10.12211/2096-8280.2023-097
    摘要1099)   HTML114)    PDF(pc) (2544KB)(852)    收藏

    丝状真菌(filamentous fungi)具有独特的形态和细胞构造,与人类健康和工农业生产息息相关,对这类生物资源的开发和利用高度依赖高效的基因编辑平台。然而,由于丝状真菌复杂多样的遗传背景,使用传统的基因编辑技术较难实现大范围的基因编辑,极大地妨碍了丝状真菌的遗传学研究。CRISPR/Cas(clustered regularly interspaced short palindromic repeat/CRISPR-associated protein)技术的出现,打破了这一困境,促进了不同种属和不同来源的丝状真菌的基因编辑,为丝状真菌的基础和应用研究带来了革命性的突破。本文简述了CRISPR/Cas系统的作用机理、分类及基于CRISPR的各种新型技术,归纳总结了丝状真菌中现有的CRISPR/Cas9系统功能组分、多种新兴CRISPR/Cas技术在丝状真菌中的应用现状以及海洋真菌中的CRISPR/Cas技术的应用情况。最后,对CRISPR/Cas系统在丝状真菌中应用进展缓慢、编辑效率低和脱靶效应等问题以及针对这些问题的潜在解决方法进行总结和展望,以期为不同类型的丝状真菌基因编辑平台的构建提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 合成生物学助力萜类香精香料可持续生产
    张梦瑶, 蔡鹏, 周雍进
    合成生物学    DOI: 10.12211/2096-8280.2024-057
    录用日期: 2024-09-20

    20. 综合利用木质纤维素生物转化合成有机酸
    柴猛, 王风清, 魏东芝
    合成生物学    2024, 5 (6): 1242-1263.   DOI: 10.12211/2096-8280.2024-011
    摘要1086)   HTML86)    PDF(pc) (2411KB)(765)    收藏

    开发环境友好型的生物可降解材料,被公认为是解决“白色污染”的重要途径。作为制备生物可降解材料的主要原料之一,有机酸的绿色高效制造备受关注。木质纤维素是储量庞大且可再生的自然资源,以木质纤维素为原料,通过生物转化的方式生产有机酸,是发展绿色可降解生物基材料的理想途径,具有过程绿色低碳的优势,符合绿色可持续发展经济的需求。近年来,人们针对木质纤维素的生物炼制开展了大量研究,并在生物转化合成有机酸等领域取得了重要进展,特别是在高产有机酸微生物细胞工厂的设计开发上不断取得突破,使得生物基有机酸的生产水平屡创新高,丁二酸等品种的产量甚至突破了150 g/L,积极推动了生物基可降解材料产业的形成和发展。本文介绍了木质纤维素的组分并总结了木质纤维素的物理预处理法、化学预处理法、生物预处理法、物理-化学共处理法和化学-生物共处理法等多种预处理技术,以及抑制物的脱毒技术、还原催化分馏工艺、催化剂的回收、偶联木质纤维素水解和发酵的制造工艺。并以木质纤维素为原料合成的高价值有机酸(丁二酸、3-羟基丙酸、黏康酸、2,5-呋喃二甲酸和2-吡喃酮-4,6-二羧酸)为例,从这些有机酸的生物合成途径,合成生物学改造策略和发酵条件优化等角度探讨了这些有机酸的研究现状。最后,对当前生物可降解材料产业链的发展趋势进行了总结和展望,讨论了开发新型预处理技术和优化联合生物处理工艺等策略对木质纤维素组分解离和利用的重要意义,并从提高微生物细胞工厂的鲁棒性以及设计木质纤维素的综合转化途径等方面进行系统分析,以期能为有机酸的工业化生产提供参考。

    参考文献 | 相关文章 | 多维度评价