LI Xingye, HU Nan
Received:
2025-03-19
Revised:
2025-07-07
Published:
2025-07-09
Contact:
HU Nan
李星烨, 胡楠
通讯作者:
胡楠
作者简介:
CLC Number:
LI Xingye, HU Nan. Phenolic acid compounds: extraction from plants to biosynthesis[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-018.
李星烨, 胡楠. 酚酸类化合物:从植物提取到生物合成[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-018.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-018
方法 | 提取率 | 优势 | 缺点 | 主要成分 | 参考文献 |
---|---|---|---|---|---|
有机溶剂 提取 | 8.90 mg/g | 高效去除杂质、易于实施、溶解能力强 | 污染环境、影响产品质量、大规模工业应用时成本较高 | 没食子酸 | [ |
超声辅助 提取 | 3.0641±0.0767到 4.0266 ± 0.1292 mg/g之间 | 适合大规模商用、提取效率和质量高、低能耗、有效保护活性成分、环保 | 范围小、设备成本偏高、操作时变量较多,较为复杂 | 鞣花酸 | [ |
微波辅助 提取 | 23.56 mg/g | 提取率和提取效率高,节能环保,具有高选择性和回收率 | 可能引起热降解导致敏感化合物分解或变性,适用范围有限 | 芥子酸 | [ |
超临界 CO2提取 | 0.0003-0.00152 mg/g之间 | CO2溶剂价格便宜 | 溶剂选择不当容易造成所需化合物的损耗 | 对香豆酸 | [ |
索氏提取 | 0.2232 mg/g | 方法简单、成本低、提取温度相对稳定 | 耗时长、需要消耗大量提取溶剂、热敏化合物易分解 | 没食子酸 | [ |
加速溶剂 萃取 | 31.4mg/g | 减少溶剂消耗和提取时间、可作为SFE萃取极性化合物的替代技术 | 仅适用于高温下提取相对稳定的化合物 | 酚类化合物 | [ |
Table 1 Advantages and disadvantages of common extraction methods
方法 | 提取率 | 优势 | 缺点 | 主要成分 | 参考文献 |
---|---|---|---|---|---|
有机溶剂 提取 | 8.90 mg/g | 高效去除杂质、易于实施、溶解能力强 | 污染环境、影响产品质量、大规模工业应用时成本较高 | 没食子酸 | [ |
超声辅助 提取 | 3.0641±0.0767到 4.0266 ± 0.1292 mg/g之间 | 适合大规模商用、提取效率和质量高、低能耗、有效保护活性成分、环保 | 范围小、设备成本偏高、操作时变量较多,较为复杂 | 鞣花酸 | [ |
微波辅助 提取 | 23.56 mg/g | 提取率和提取效率高,节能环保,具有高选择性和回收率 | 可能引起热降解导致敏感化合物分解或变性,适用范围有限 | 芥子酸 | [ |
超临界 CO2提取 | 0.0003-0.00152 mg/g之间 | CO2溶剂价格便宜 | 溶剂选择不当容易造成所需化合物的损耗 | 对香豆酸 | [ |
索氏提取 | 0.2232 mg/g | 方法简单、成本低、提取温度相对稳定 | 耗时长、需要消耗大量提取溶剂、热敏化合物易分解 | 没食子酸 | [ |
加速溶剂 萃取 | 31.4mg/g | 减少溶剂消耗和提取时间、可作为SFE萃取极性化合物的替代技术 | 仅适用于高温下提取相对稳定的化合物 | 酚类化合物 | [ |
使用菌种 | 合成工艺 | 产量/产率 | 主要成分 | 参考文献 |
---|---|---|---|---|
毕赤酵母 | 使用乙醇诱导型人工转录系统表达PAL酶,将L-苯丙氨酸和L-酪氨酸转化为对香豆酸。 | 0.302 mg/g | 对香豆酸 | [ |
毕赤酵母 | 通过乙醇诱导型人工转录系统表达PAL酶,将L-苯丙氨酸和L-酪氨酸转化为肉桂酸 | 0.1421mg/g | 肉桂酸 | [ |
大肠杆菌 | 敲除大肠杆菌中的全局调控基因tyrR,构建高产酪氨酸模块,并用改造后的菌株参与阿魏酸的从头合成 | 4.99mg/g | 阿魏酸 | [ |
黑曲霉 | A.niger CHI菌株在以聚氨酯泡沫载体固态发酵 | 42.02 mg/g | 鞣花酸 | [ |
酵母菌 | 苯乙醇合成法 | 90% | β-对羟基苯乙醇 | [ |
发根农杆菌 | 通过制备转基因拟南芥诱导丹参毛状根合成丹酚酸B | 73.65±4.85 mg/g | 丹酚酸B | [ |
发根农杆菌 | 通过制备转基因拟南芥诱导丹参毛状根合成迷迭香酸 | 30.51±2.78 mg/g | 迷迭香酸 | [ |
大肠杆菌 | 通过合成途径重构的手段,在重组质粒中增加EchpaBC的拷贝数,提高咖啡酸产量 | 0.18515mg/g | 咖啡酸 | [ |
Table 2 Progress in the biosynthesis of common phenolic acid compounds
使用菌种 | 合成工艺 | 产量/产率 | 主要成分 | 参考文献 |
---|---|---|---|---|
毕赤酵母 | 使用乙醇诱导型人工转录系统表达PAL酶,将L-苯丙氨酸和L-酪氨酸转化为对香豆酸。 | 0.302 mg/g | 对香豆酸 | [ |
毕赤酵母 | 通过乙醇诱导型人工转录系统表达PAL酶,将L-苯丙氨酸和L-酪氨酸转化为肉桂酸 | 0.1421mg/g | 肉桂酸 | [ |
大肠杆菌 | 敲除大肠杆菌中的全局调控基因tyrR,构建高产酪氨酸模块,并用改造后的菌株参与阿魏酸的从头合成 | 4.99mg/g | 阿魏酸 | [ |
黑曲霉 | A.niger CHI菌株在以聚氨酯泡沫载体固态发酵 | 42.02 mg/g | 鞣花酸 | [ |
酵母菌 | 苯乙醇合成法 | 90% | β-对羟基苯乙醇 | [ |
发根农杆菌 | 通过制备转基因拟南芥诱导丹参毛状根合成丹酚酸B | 73.65±4.85 mg/g | 丹酚酸B | [ |
发根农杆菌 | 通过制备转基因拟南芥诱导丹参毛状根合成迷迭香酸 | 30.51±2.78 mg/g | 迷迭香酸 | [ |
大肠杆菌 | 通过合成途径重构的手段,在重组质粒中增加EchpaBC的拷贝数,提高咖啡酸产量 | 0.18515mg/g | 咖啡酸 | [ |
特征 | 莽草酸途径 | 苯丙烷途径 |
---|---|---|
起始底物 | 磷酸烯醇式丙酮酸(PEP)和赤藓糖-4-磷酸(E4P) | 苯丙氨酸、酪氨酸 |
主要产物 | chorismate | 木质素、类黄酮、花青素等多种苯丙烷类化合物 |
生物学功能 | 合成芳香族氨基酸及其他重要代谢前体 | 参与植物生长发育、防御反应、色素形成等多种生理过程 |
存在范围 | 细菌、真菌、藻类和植物 | 植物 |
Table 3 The difference between the shikimic acid pathway and the phenylpropane pathway
特征 | 莽草酸途径 | 苯丙烷途径 |
---|---|---|
起始底物 | 磷酸烯醇式丙酮酸(PEP)和赤藓糖-4-磷酸(E4P) | 苯丙氨酸、酪氨酸 |
主要产物 | chorismate | 木质素、类黄酮、花青素等多种苯丙烷类化合物 |
生物学功能 | 合成芳香族氨基酸及其他重要代谢前体 | 参与植物生长发育、防御反应、色素形成等多种生理过程 |
存在范围 | 细菌、真菌、藻类和植物 | 植物 |
宿主细胞 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
Saccharomyces cerevisiae(酿酒酵母) | 1. 遗传背景清晰,基因操作技术成熟,易于进行基因敲除、过表达等操作 , 具有真核细胞的特点,可以进行复杂的蛋白质翻译后修饰,对表达外源植物基因具有一定的优势 2. 具有真核细胞的特点,可以进行复杂的蛋白质翻译后修饰,对表达外源植物基因具有一定的优势 3. 对工业生产具有良好的适应性,可在较高pH和温度下生长,降低污染风险 | 存在“Crabtree效应”,即在有氧条件下,葡萄糖代谢仍然倾向于产生乙醇,这会降低碳源向目标产物的转化效率 | [ |
Escherichia coli (大肠杆菌) | 1. 生长速度快,培养周期短,易于大规模培养。 2. 遗传操作更加简便,具有大量的基因编辑工具,例如 CRISPR-Cas9 系统,可以快速进行基因组改造 3. 代谢途径研究深入,可以通过代谢工程手段精确调控代谢流 | 缺乏真核细胞的蛋白质翻译后修饰机制,对外源植物基因的表达可能存在障碍 | [ |
植物细胞 | 1. 具有完整的酚酸类化合物合成途径,表达相关基因无需进行复杂的途径引入。 2. 可以进行多种酚酸类化合物的合成,具有天然的多样性优势 | 生长速度慢,培养周期长,不利于大规模工业化生产。 遗传转化效率低,基因操作相对困难 | [ |
Table 4 Comparison of advantages and disadvantages of three representative host cells
宿主细胞 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
Saccharomyces cerevisiae(酿酒酵母) | 1. 遗传背景清晰,基因操作技术成熟,易于进行基因敲除、过表达等操作 , 具有真核细胞的特点,可以进行复杂的蛋白质翻译后修饰,对表达外源植物基因具有一定的优势 2. 具有真核细胞的特点,可以进行复杂的蛋白质翻译后修饰,对表达外源植物基因具有一定的优势 3. 对工业生产具有良好的适应性,可在较高pH和温度下生长,降低污染风险 | 存在“Crabtree效应”,即在有氧条件下,葡萄糖代谢仍然倾向于产生乙醇,这会降低碳源向目标产物的转化效率 | [ |
Escherichia coli (大肠杆菌) | 1. 生长速度快,培养周期短,易于大规模培养。 2. 遗传操作更加简便,具有大量的基因编辑工具,例如 CRISPR-Cas9 系统,可以快速进行基因组改造 3. 代谢途径研究深入,可以通过代谢工程手段精确调控代谢流 | 缺乏真核细胞的蛋白质翻译后修饰机制,对外源植物基因的表达可能存在障碍 | [ |
植物细胞 | 1. 具有完整的酚酸类化合物合成途径,表达相关基因无需进行复杂的途径引入。 2. 可以进行多种酚酸类化合物的合成,具有天然的多样性优势 | 生长速度慢,培养周期长,不利于大规模工业化生产。 遗传转化效率低,基因操作相对困难 | [ |
[1] | 刘苹,赵海军,唐朝辉,等。连作对不同抗性花生品种根系分泌物及土壤中化感物质含量的影响 [J]. 中国油料作物学报,2015,37 (4):467-474. |
[2] | 李树白,聂华丽,薛勇,等。对羟基苯乙酸对蘑菇酪氨酸酶催化反应的抑制动力学 [J]. 化学试剂,2010,32 (2):97-101. |
[3] | 于倩。连钱草颗粒中对羟基苯甲酸和对羟基苯乙酸的测定及药代动力学研究 [D]. 大连:大连医科大学,2016. |
[4] | KUMAR N, GOEL N.Phenolic acids:Natural versatile molecules with promising therapeutic applications [J].Biotechnology Reports,2019,24:e00370. |
[5] | YANG Y, HE S G.Research progress on allium allelopathy [J].Northern Horticulture,2016 (3):189-194. |
[6] | 张东明。酚酸化学 [M]. 北京:化学工业出版社,2009. |
[7] | SHI Mengyao, ZHAO Wei, YANG An'an, WANG Jing, XIE Min, HUANG Chaobo.Preparation and application of phenolic acids in cosmetics [J].Fine Chemicals,2024,(No.2):245-256,276. |
[8] | VILLEGAS-AGUILAR M del C, SÁNCHEZ-MARZO N, FERNÁNDEZ-OCHOA Á,et al.Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions against Different Therapeutic Targets [J].Antioxidants,2024,13 (2):217. |
[9] | 陈志杰,吴嘉琪,马燕,等。植物食品原料中酚酸的生物合成与调控及其生物活性研究进展 [J]. 食品科学,2018,39 (07):321-328. |
[10] | GROMOVAYA V F, SHAPOVAL G S, MIRONYUK I E.[J].Russian Journal of General Chemistry,2002,72 (5):774-777. |
[11] | GAO Q, LI Y, LI Y,et al. 蔬菜中常见酚酸的抗氧化和促氧化活性及其与结构的关系 [J].Food Science and Technology,2022,42. |
[12] | KOCH W, KUKUŁA-KOCH W, CZOP M,et al.The Role of Extracting Solvents in the Recovery of Polyphenols from Green Tea and Its Antiradical Activity Supported by Principal Component Analysis [J].Molecules,2020,25 (9):2173. |
[13] | ZALA A R, RAJANI D P, KUMARI P.Synthesis,molecular docking,ADME study,and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase Inhibitor [J].Journal of Biochemical and Molecular Toxicology,2022,37 (1). |
[14] | MERMER A, KELES T, SIRIN Y.Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents:A Review [J].Bioorganic Chemistry,2021,114:105076. |
[15] | FLORIS B, GALLONI P, CONTE V,et al.Tailored Functionalization of Natural Phenols to Improve Biological Activity [J].Biomolecules,2021,11 (9):1325. |
[16] | GOMES C A, GIRÃO DA CRUZ T, ANDRADE J L,et al.Anticancer activity of phenolic acids of natural or synthetic origin:a structure-activity study [J].Journal of Medicinal Chemistry,2003,46 (25):5395-5401. |
[17] | GODLEWSKA-ŻYŁKIEWICZ B, ŚWISŁOCKA R, KALINOWSKA M,et al.Biologically Active Compounds of Plants:Structure-Related Antioxidant,Microbiological and Cytotoxic Activity of Selected Carboxylic Acids [J].Materials,2020,13 (19):4454. |
[18] | Wang C, Wang H, Zhao Z,et al.Pediococcus acidilactici AS185 attenuates early atherosclerosis development through inhibition of lipid regulation and inflammation in Rats [J].Journal of Functional Foods,2019,60:103424. |
[19] | Chatatikun M, Kwanhian W.Phenolic Profile of Nipa Palm Vinegar and Evaluation of Its Antilipidemic Activities [J].Evidence-Based Complementary and Alternative Medicine,2020,2020 (1). |
[20] | Cheng Y, Wang Y, Yuan T,et al.Polyphenol compounds contributing to the improved bioactivities of fermented Rubus chingii Hu [J].Food Research International,2024,197:115218. |
[21] | LI Jingfang.Discussion on the effect and mechanism of enzymatic browning and functional component changes of lotus root on lipid and cholesterol reduction [D].Nanchang University,2023. |
[22] | HU Yongmei.Evaluation of antimicrobial activity and mechanism of plant polyphenols and their derivatives [D].Lanzhou University,2023. |
[23] | WANG Jing, DING Haiyan.Research progress on the antibacterial effect of phenolic acids [J].Proprietary Chinese medicines,2022,44 (06):1906-1911. |
[24] | Satish Kumar Sarankar, Rajak Brajesh, Ojha Santosh,et al.Exploring the utilization of phenolic compounds in pharmaceuticals and healthcare [J].GSC Biological and Pharmaceutical Sciences,2023,24 (3):095-102. |
[25] | Zhao N, Liu Z, Yu T,et al.Spent coffee grounds:Present and future of environmentally friendly applications on industries-A Review [J].Trends in Food Science & Technology,2024,143:104312. |
[26] | Wang M, Wang Z, Zhang J,et al.Sustainable Bioactive Salts Fully Composed of Natural Products for Enhanced Pharmaceutical Applicability [J].ACS Sustainable Chemistry & Engineering,2022,10 (31):10369–10382. |
[27] | Mal D, Shome B, Dinda B K.Research Progress on Synthesis of Medicine Anticancer Benzene and Pyrrole and Its DerivativesZ. |
[28] | Roy A, Chinta J P.Antioxidant conjugated metal complexes and their medicinal Applications [M]//Vitamins and Hormones.Elsevier,2023:319–353. |
[29] | KONG Lingyi.Natural Medicinal Chemistry [M].Chemical Industry Press:201805. |
[30] | YUE Chunlei.Study on the synthesis of rosmarinic acid and its precursors by metabolically engineered Saccharomyces cerevisiae yeast [D].Yangzhou University,2022. |
[31] | Liang X, Fan Q.Application of Sub-Critical Water Extraction in Pharmaceutical Industry [C] Jinan University,Society for Plant Research (India),Kyung Hee University (Korea),Engineering Information Institute,Scientific Research Publishing.Proceedings of 2013 World Congress on Engineering and Technology (CET 2013).Department of Pharmacy,College of Veterinary,Sichuan Agricultural University;,2013:6. |
[32] | Pharmacy O D L X, Veterinary O C, Ya'an U A S,et al.Application of Sub-critical Water Extraction in Pharmaceutical Industry [C] IEEE Beijing Section,IEEE Wuhan Section,Tongji University,Wuhan University,Engineering Information Institute.Proceedings of 2011 World Congress on Engineering and Technology (CET 2011) VOL05.[Publisher unknown],2011:4. |
[33] | WANG Ruihong.Effect of overexpression of SmPsbD on photosynthesis and phenolic compound biosynthesis of Salvia miltiorrhizae [D].Northwest A&F University,2020. |
[34] | GUO Na.Extraction and microbial transformation of active ingredients from mulberry leaves and fruits [D].Northeast Forestry University,2021. |
[35] | Wang jing.Isolation and active strains of lichen endophytic fungi of Camellia lichen in Cangshan area Coprinopsis sp.Ts-F016 preliminary study on secondary metabolites against MRSA [D].Dali University,2023. |
[36] | Marchiosi R, dos Santos W D, Constantin R P,et al.Biosynthesis and metabolic actions of simple phenolic acids in plants [J].Phytochemistry Reviews,2020,19:865-906. |
[37] | Phenolics and Flavonoids [C] International Union of Food Science and Technology,Chinese Institute of Food Science and Technology.Abstracts of 14th World Congress of Food Science & Technology.[Publisher unknown],2008:23. |
[38] | Serena C, Giovanna F, Gianpiero P.Pulsed electric fields-assisted extraction of valuable compounds from red grape pomace:Process optimization using response surface methodology [J].Frontiers in Nutrition,2023,10:1158019. |
[39] | Hammoud M, Debs E, Broek D V M A L,et al.Intensification of extraction process through IVDV pretreatment from Eryngium creticum leaves and stems:Maximizing yields and assessing biological activities.[J].Heliyon,2024,10 (6):e27431. |
[40] | Dong J, Chen X, Wang C,et al.Ultra-fast and selective extraction of phenolic acids by multifunctional and magnetic nanomaterials in Honeysuckle [J].Journal of Chromatography A,2025,1755:466028. |
[41] | Osamede Airouyuwa J, Sivapragasam N, Ali Redha A,et al.Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES):A review of recent Developments [J].Food Chemistry,2024,448:139061. |
[42] | Djaoudene O, Bachir-Bey M, Schisano C,et al.A Sustainable Extraction Approach of Phytochemicals from Date (Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent:A Comprehensive Study on Bioactivity and Phenolic Variability [J].Antioxidants,2024,13 (2):181. |
[43] | Mokhtari B, Pourabdollah K.Inclusion extraction of alkali metals by emulsion liquid membranes bearing Nano-Baskets [J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2012,76 (3–4):403–413. |
[44] | ZHOU B, YAN S, LI Y.Expression of Anthocyanin Biosynthetic Genes During Fruit Development in 'Fengxiang' Strawberry [C] Intelligent Information Technology Application Association.Future Material Research and Industry Application(FMRIA 2011 Part 1).College of Life Science,Northeast Forestry University;,2011:6. |
[45] | ZHU Yanqin.Study on Chemical Diversity of Moringa oleifera Leaves in Different Habitats Based on Metabolomics and Transcriptomics [D].Kunming University of Science and Technology,2021. |
[46] | LIU Xinyu.Metabolomic analysis and biological activity of three Artemisia species in Tibet [D].Northwest A&F University,2023. |
[47] | HAJMOHAMMADI M R, NAJAFI A S, RAJAB D Z,et al.Ultrasound-assisted vesicle-based microextraction as a novel method for determination of phenolic acid compounds in Nepeta cataria L.samples [J].Journal of the Iranian Chemical Society,2021,18:1559-1566. |
[48] | LI Hui, LI Youji, JIANG Jianbo.Extraction technology of plant natural products [M].Chemical Industry Press:202207. |
[49] | Hong X W, Chen C, Mei X L.Optimal Extraction of Gallic Acid from Suaeda glauca Bge.Leaves and Enhanced Efficiency by Ionic Liquids [J].International Journal of Chemical Engineering,2016,2016 (0):5217802,2-9-9. |
[50] | Zhao Y, Jun S Y, Huan G,et al.Natural deep eutectic solvent-ultrasound assisted extraction:A green approach for ellagic acid extraction from Geum japonicum [J].Frontiers in Nutrition,2023,9:1079767. |
[51] | AHMAD A.A BOX-BEHNKEN DESIGN FOR OPTIMIZATION OF ULTRASOUND-ASSISTED EXTRACTION OF SINAPIC ACID FROM FRAGARIA ANANASSA.[J].FARMACIA,2023. |
[52] | Kuś P, Jerković I, Jakovljević M,et al.Extraction of bioactive phenolics from black poplar ( Populus nigra L.) buds by supercritical CO 2 and its optimization by response surface methodology [J].Journal of Pharmaceutical and Biomedical Analysis,2018,152:128-136. |
[53] | al Amirahet."Comparison of extraction techniques on extraction of gallic acid from stem bark of Jatropha curcas." Journal of Applied Sciences 12 (2012):1106-1111. |
[54] | Panagiotidou C.; Bouloumpasi E.; Irakli M.; Chatzopoulou P.Optimization of Extracted Phenolic Compounds from Oregano through Accelerated Solvent Extraction Using Response Surface Methodology.Eng.Proc.2024,67,10. |
[55] | GAO Xuan.Study on ultrasound-assisted green synthesis of gold nanoparticles from citrus peel extract and their anti-inflammatory activity [D].Jiangsu University,2022. |
[56] | Ramiro F B, Rocío C, Ana M,et al.Antioxidant,Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods [J].International Journal of Environmental Research and Public Health,2021,18 (5):2475. |
[57] | WANG L, BOUSSETTA N, LEBOVKA N,et al.Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues [J].LWT Food Science and Technology,2018,93:511-516. |
[58] | Santos-Sánchez, Norma Franceniaet al."Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds."Plant Physiological Aspects of Phenolic Compounds (2019):n. pag. |
[59] | Chen Xinjie, Qian Zhilan, Liu Qi,et al.Synthesis pathway of aromatic amino acids in Pichia pastoris chassis for the production of cinnamic acid and p-coumaric acid [J].Chinese Journal of Bioengineering,2021,41 (10):52-61. |
[60] | Li Yuanzi, Xie Qin, Liao Yonghong,et al.Research progress on the synthesis of ferulic acid by microorganisms [J].Chinese Journal of Bioengineering,2024,44 (09):113-125. |
[61] | Qu Yanjun, Wang Wenhui, Cao Jianan,et al.Research progress on the preparation and application of ellagic acid [J].Food and nutrition in China,2022,28 (06):39-45. |
[62] | LI Ning, SONG Chunming.Research on the synthesis and process of pharmaceutical intermediates β-p-hydroxyphenylethanol [J].Chemical management,2017,(26):65. |
[63] | Tan Ronghui, Zhao Wang, Zhang Jinjia,et al.Study on the regulation of salvianolic acid biosynthesis by SmHPPR1 gene in Salvia miltiorrhizae [J].Acta Pharmacologica Sinica,2023,58 (09):2818-2828. |
[64] | LIU Rong, WANG Meiyan, DU Hongyi,et al.Reconstitution of caffeic acid synthesis pathway and its heterologous expression in Escherichia coli [J].Acta Microbiologica Sinica,2024,64 (11):4371-4387. |
[65] | Hefin T J C G C G C J E S H.Biosynthesis of plant phenolic compounds in elevated atmospheric CO2 [J].Global Change Biology,2000,6 (5):497-506. |
[66] | Ortega-Hernández E, Nair V, Welti-Chanes J,et al.Wounding and UVB Light Synergistically Induce the Biosynthesis of Phenolic Compounds and Ascorbic Acid in Red Prickly Pears (Opuntia ficus-indica cv. Rojo Vigor)[J].International Journal of Molecular Sciences,2019,20 (21):5327. |
[67] | Guleria P, Kumar V.Understanding the phenylpropanoid pathway for agronomical and nutritional improvement of Mungbean [J].The Journal of Horticultural Science and Biotechnology,2017:1–14. |
[68] | Shende V V, Bauman K D, Moore B S.The shikimate pathway:Gateway to metabolic Diversity [J].Natural Product Reports,2024,41 (4):604–648. |
[69] | Almeida A M, Abrahão J, Seixas F A V,et al.Unraveling Shikimate Dehydrogenase Inhibition by 6-Nitroquinazoline-2,4-diol and Its Impact on Soybean and Maize Growth [J].Agronomy,2024,14 (5):930. |
[70] | Yang L, Sun J, Zhang T,et al.Comparative transcriptome analysis and HPLC reveal candidate genes associated with synthesis of bioactive constituents in Rheum palmatum Complex [J].Physiology and Molecular Biology of Plants,2024,30 (8):1239-1252. |
[71] | Barber M S, Mitchell H J.Regulation of Phenylpropanoid Metabolism in Relation to Lignin Biosynthesis in Plants [M]//International Review of Cytology.Elsevier,1997:243-293. |
[72] | Bhagat Nancy 1;Ritika Mansotra1;Karan Patel2;Sheetal Ambardar1;Jyoti Vakhlu1CA1.Molecular warfare between pathogenic Fusarium oxysporum R1 and host Crocus sativus L.unraveled by dual transcriptomics [J].Plant Cell Reports.2024,Vol.43 (No.2):42. |
[73] | Peled-Zehavi H, Oliva M, Xie Q,et al.Metabolic Engineering of the Phenylpropanoid and Its Primary, Precursor Pathway to Enhance the Flavor of Fruits and the Aroma of Flowers [J].Bioengineering,2015,2 (4):204-212. |
[74] | Jadhav P. R.; Mahatma M. K.; Jha Sanjay; Mahatma Lalit; Parekh V. B.; Jha S. K..Changes in phenylpropanoid pathway during compatible and incompatible interaction of Ricinus communis-Fusarium oxysporum f.sp. ricini.[J].Indian Journal of Agricultural Biochemistry.2013,Vol.26 (No.1) |
[75] | Rashidifar M, Askari H, Moghadam A.Integrated transcriptomic data reveal a regulatory network for the lignin biosynthesis in Nicotiana tabacum upon drought Stress [J].Genetic Resources and Crop Evolution,2024,72 (3):3581–3602. |
[76] | Yang J-W, Park S-U, Lee H-U,et al.Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection [J].Antioxidants,2023,12 (6):1164. |
[77] | Qi Zhang, Wang Shukun, Qin Bin, Sun Hao‐yue, Yuan Xian‐kai, Qi Wang, Xu Junjie, Yin Zhengong, Du Yan‐li, Du Ji‐dao, Li Caihua,Analysis of the transcriptome and metabolome reveals phenylpropanoid mechanism in common bean (Phaseolus vulgaris) responding to salt stress at sprout stage [J].Food and Energy Security.2023,Vol.12 (No.5):n/a. |
[78] | Xiaoya T, Qiong W, Jiayin L,et al.Exogenous methyl jasmonate regulates phenolic compounds biosynthesis during postharvest tomato ripening [J].Postharvest Biology and Technology,2022,184 |
[79] | Pascual G, Leilei Z, Begoña M,et al.The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe)[J].Plants,2021,10 (11):2430-2430. |
[80] | Meiling D, Bin Z, Shuo Z,et al.The SmNPR4-SmTGA5 module regulates SA-mediated phenolic acid biosynthesis in Salvia miltiorrhiza hairy roots.[J].Horticulture research,2023,10 (5):uhad066-uhad066. |
[81] | Bioengineering A B O C L Y C J, Technology A S O U H, Road E Y 1,et al.Response surface optimization of medium composition for phenylalanine ammonia lyase production by recombinant E.coli [C] Chinese Renewable Energy Society,Chinese Bioenergy Association.International Conference on Biomass Energy Technologies Proceeding (Volume 2).[出版者不详],2008:6. |
[82] | Zhao Y, Chen K, Yang H,et al.Semirational Design Based on Consensus Sequences to Balance the Enzyme Activity-Stability Trade-Off [J].Journal of Agricultural and Food Chemistry,2024,72 (12):6454–6462. |
[83] | Mao Z, Jiang H, Sun J,et al.Research progress in the preparation and Structure-activity relationship of bioactive peptides derived from aquatic Foods [J].Trends in Food Science & Technology,2024,147:104443. |
[84] | Shi M, Huang F, Deng C,et al.Bioactivities,biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza [J].Critical reviews in food science and nutrition,2019,59 (6):953-964. |
[85] | WANG Lian.Construction and optimization of microbial synthetic silybin system [D].Jiangnan University,2024. |
[86] | ZHOU Jingwen, CHEN Jian, WU Junjun.Synthetic biology manufacturing of flavonoids [M].Chemical Industry Press:202111. |
[87] | Zhang M-M, Yuan B, Li Y-Z,et al.Differential global gene transcription of Saccharomyces cerevisiae by zinc sulfate addition under acetic acid stress and identification of novel zinc and Stress-responsive genes related to cell wall Function [J].Fungal Biology,2025,129 (4):101573. |
[88] | Guo Y, Xiong Z, Zhai H,et al.The advances in creating Crabtree-negative Saccharomyces cerevisiae and the application for chemicals Biosynthesis [J].FEMS Yeast Research,2025,25. |
[89] | Feng J, Hauser M, Cox R J,et al.Engineering Aspergillus oryzae for the Heterologous Expression of a Bacterial Modular Polyketide Synthase [J].Journal of Fungi,2021,7 (12):1085. |
[90] | Cai M, Liu Z, Zhao Z,et al.Microbial production of L-methionine and its precursors using systems metabolic Engineering [J].Biotechnology Advances,2023,69:108260. |
[91] | Nonaka D, Kishida M, Hirata Y,et al.Modular pathway engineering for enhanced production of para-aminobenzoic acid and 4-amino-phenylalanine in Escherichia coli via glucose/xylose co-Utilization [J].Applied and Environmental Microbiology,2025,91 (5). |
[92] | Khandy M T, Sofronova A K, Gorpenchenko T Y,et al.Plant Pyranocoumarins:Description,Biosynthesis,Application [J].Plants,2022,11 (22):3135. |
[93] | Lee K Y, Nam D-H, Jeon Y,et al.Exploring the Production of Secondary Metabolites from a Halophyte Tetragonia tetragonoides through Callus Culture [J].Horticulturae,2024,10 (3):244. |
[94] | Alara O R, Abdurahman N H, Ukaegbu C I.Extraction of phenolic compounds:A review [J].Current research in food science,2021,4:200-214. |
[95] | Irfan M, Ahmad T, Moniruzzaman M,et al.Effect of pH on ionic liquid mediated synthesis of gold nanoparticle using elaiseguineensis (palm oil) kernel extract [C] Udayana University,Indonesia.Proceedings of 5th International Conference on Nanomaterials and Materials Engineering (ICNME 2017).Chemical Engineering Department,Universiti Teknologi PETRONAS;,2017:6. |
[96] | Science L O C Z B, Harbin U F N, Science L O C Y S C,et al.Expression of anthocyanin biosynthetic genes during fruit development in 'Fengxiang' strawberry [C] International Science and Engineering Center, HongKong,Wuhan Institute of Technology, China.Proceedings of 2010 First International Conference on Cellular,Molecular Biology,Biophysics and Bioengineering (Volume 2).[Publisher unknown],2010:4. |
[97] | Dias M I, Sousa M J, Alves R C,et al.Exploring plant tissue culture to improve the production of phenolic compounds:A review [J].Industrial crops and products,2016,82:9-22. |
[98] | Ma J, Yang B, Chen M,et al.Complete chloroplast genome of Clematis terniflora DC.:structural features and gene expression variation induced by UV-B radiation plus incubation in dark [C] Bioinformatics Society of Zhejiang Province.Proceedings of the 5th Annual Academic Conference of Zhejiang Bioinformatics Society and the International Symposium on Precision Medicine in the Era of Big Data.College of Biomedical Engineering & Instrument Science,Zhejiang University;Education Ministry Key Laboratory for Biomedical Engineering,Zhejiang University;,2017:31. |
[99] | ZHOU Rui.Bactericidal evaluation of small molecule phenolic compounds and their synergistic effect with theanine,neo-sylvestrine and juniol [D].Lanzhou University,2021. |
[100] | Wu Wenjun, Hu Zhaonong, Ji Zhiqin.Research and application of plant-derived pesticides in China [M].Chemical Industry Press:202010. |
[101] | LIU Jie.Study on the effect of by-products of fermented wolfberry in alleviating macrophage inflammation [D].Ningxia University,2023. |
[102] | Baiano A, Del Nobile M A.Antioxidant compounds from vegetable matrices:Biosynthesis,occurrence,and extraction systems [J].Critical reviews in food science and nutrition,2016,56 (12):2053-2068. |
[103] | WANG Wenwen.Study on the protective effect and mechanism of fermented soybean meal on the intestinal barrier of weaned piglets [D].Inner Mongolia Agricultural University,2023. |
[104] | Functional Ingredients from Plant Resources [C] International Union of Food Science and Technology,Chinese Institute of Food Science and Technology.Abstracts of 14th World Congress of Food Science & Technology.[Publisher unknown],2008:36. |
[105] | Mortazaeinezahad F, Safavi K.Investigation of epicatechin in barberry fruits [C] Asia-Pacific Chemical,Biological & Environmental Engineering Society (APCBEES).Proceedings of International Conference on Life Science and Technology(ICLST 2011).Department of Horticulture,Islamic Azad University-Khorasgan Branch,Isfahan,Iran;Islamic Azad University-Khorasgan Branch,searcherse ClubYoungR,Isfahan,Iran.,2011:3. |
[1] | LI Yongzhu, CHEN Yu. Advances and prospects in genome-scale models of yeast [J]. Synthetic Biology Journal, 2025, 6(3): 585-602. |
[2] | GAO Qi, XIAO Wenhai. Advances in the biosynthesis of monoterpenes by yeast [J]. Synthetic Biology Journal, 2025, 6(2): 357-372. |
[3] | SHENG Zhouhuang, CHEN Zhixian, ZHANG Yan. Research progress of yeast mannoproteins [J]. Synthetic Biology Journal, 2025, 6(2): 408-421. |
[4] | LU Jinchang, WU Yaokang, LV Xueqin, LIU Long, CHEN Jian, LIU Yanfeng. Green biomanufacturing of ceramide sphingolipids [J]. Synthetic Biology Journal, 2025, 6(2): 422-444. |
[5] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[6] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
[7] | WANG Qian, GUO Shiting, XIN Bo, ZHONG Cheng, WANG Yu. Advances in biosynthesis of L-arginine using engineered microorganisms [J]. Synthetic Biology Journal, 2025, 6(2): 290-305. |
[8] | ZUO Yimeng, ZHANG Jiaojiao, LIAN Jiazhang. Enabling technology for the biosynthesis of cosmetic raw materials with Saccharomyces cerevisiae [J]. Synthetic Biology Journal, 2025, 6(2): 233-253. |
[9] | TANG Chuan′gen, WANG Jing, ZHANG Shuo, ZHANG Haoning, KANG Zhen. Advances in synthesis and mining strategies for functional peptides [J]. Synthetic Biology Journal, 2025, 6(2): 461-478. |
[10] | HUANG Shuhan, MA He, LUO Yunzi. Research progress in the biosynthesis of salidroside [J]. Synthetic Biology Journal, 2025, 6(2): 391-407. |
[11] | GUO Shuyuan, ZHANG Qiannan, Gulikezi· MAIMAITIREXIATI, YANG Yiqun, YU Tao. Advances in microbial production of liquid biofuels [J]. Synthetic Biology Journal, 2025, 6(1): 18-44. |
[12] | ZHONG Quanzhou, SHAN Yiyi, PEI Qingyun, JIN Yanyun, WANG Yihan, MENG Luyuan, WANG Xinyun, ZHANG Yuxin, LIU Kunyuan, WANG Huizhong, FENG Shangguo. Research progress in the production of α-arbutin through biosynthesis [J]. Synthetic Biology Journal, 2025, 6(1): 118-135. |
[13] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[14] | ZHAO Liang, LI Zhenshuai, FU Liping, LYU Ming, WANG Shi’an, ZHANG Quan, LIU Licheng, LI Fuli, LIU Ziyong. Progress in biomanufacturing of lipids and single cell protein from one-carbon compounds [J]. Synthetic Biology Journal, 2024, 5(6): 1300-1318. |
[15] | ZHU Fanghuan, CEN Xuecong, CHEN Zhen. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||