ZHANG Jin1,2,3, ZHANG Weijiao1,2,3, XIONG Haibo1,2,3, XIE Zhuan1,2,3, XU Ruirui1,2,3, KANG Zhen1,2,3,4
Received:
2025-05-29
Revised:
2025-08-13
Published:
2025-08-16
Contact:
KANG Zhen
张瑾1,2,3, 张维娇1,2,3, 熊海波1,2,3, 谢专1,2,3, 胥睿睿1,2,3, 康振1,2,3,4
通讯作者:
康振
作者简介:
基金资助:
CLC Number:
ZHANG Jin, ZHANG Weijiao, XIONG Haibo, XIE Zhuan, XU Ruirui, KANG Zhen. Research advances in biosynthesis of chondroitin sulfate and its oligosaccharides[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-051.
张瑾, 张维娇, 熊海波, 谢专, 胥睿睿, 康振. 硫酸软骨素及其寡聚糖的生物合成进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-051.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-051
底盘细胞 | 生物法合成方式 | PAPS来源 | 产量/转化率/硫酸化度 | 来源 |
---|---|---|---|---|
E. coli Origami B (DE3) | 体外酶法 | 直接添加 | CSA产量:- CSE转化率:50.00% | [ |
Bacillus subtilis 168/ E. coli BL21(DE3)/ Komagataella phaffii GS115 | 体外酶法 | 依赖AST IV再生 | CSO产量:7.15 g/L CSA转化率:98.00% CSC转化率:96.00% | [ |
Bacillus subtilis 168/ E. coli BL21(DE3)/ Komagataella phaffii GS115 | 体外酶法 | 依赖AST IV再生 | CSO产量:- CSA转化率:98.00% | [ |
Komagataella phaffii GS115/ E. coli BL21(DE3) | 体外酶法 | 基于ATP再生系统合成PAPS | CSO产量:2.60 g/L CSA硫酸化度:40.00% | [ |
Corynebacterium glutamicum/ E. coli BL21(DE3)/ Komagataella phaffii GS115 | 体外酶法 | 基于ATP再生系统合成PAPS | CSO产量:- CSA硫酸化度:97.00% | [ |
E. coli Rosetta (DE3) | 全细胞催化法 | 基于ATP再生系统与依赖AST IV再生 | CSO产量:- CSA转化率:89.50% | [ |
E. coli Rosetta (DE3) | 全细胞催化法 | 基于ATP再生系统与依赖AST IV再生 | CSO产量:- CSE转化率:72.20% | [ |
E. coli MG1655 | 微生物一步发酵法 | 胞内PAPS天然合成 | CSO产量:- CSA产量:27.00 μg/g DCW CSA硫酸化度:96.12% | [ |
Komagataella phaffii GS115 | 微生物一步发酵法 | 胞内PAPS天然合成 | CSO产量:189.80 mg/L CSA产量:2.10 g/L CSA硫酸化度:4.00% | [ |
E. coli BL21 STAR (DE3) | 微生物一步发酵法 | 基于AMP-PAPS循环再生途径 | CSO产量:2.95 g/L CSA产量:1.89 g/L CSA硫酸化度:76.00% | [ |
Komagataella phaffii GS115 | 微生物一步发酵法 | 基于ATP-PAPS循环再生途径 | CSA产量:1.15 g/L CSA硫酸化度:96.00% | [ |
Table 1 Biosynthesis of CS
底盘细胞 | 生物法合成方式 | PAPS来源 | 产量/转化率/硫酸化度 | 来源 |
---|---|---|---|---|
E. coli Origami B (DE3) | 体外酶法 | 直接添加 | CSA产量:- CSE转化率:50.00% | [ |
Bacillus subtilis 168/ E. coli BL21(DE3)/ Komagataella phaffii GS115 | 体外酶法 | 依赖AST IV再生 | CSO产量:7.15 g/L CSA转化率:98.00% CSC转化率:96.00% | [ |
Bacillus subtilis 168/ E. coli BL21(DE3)/ Komagataella phaffii GS115 | 体外酶法 | 依赖AST IV再生 | CSO产量:- CSA转化率:98.00% | [ |
Komagataella phaffii GS115/ E. coli BL21(DE3) | 体外酶法 | 基于ATP再生系统合成PAPS | CSO产量:2.60 g/L CSA硫酸化度:40.00% | [ |
Corynebacterium glutamicum/ E. coli BL21(DE3)/ Komagataella phaffii GS115 | 体外酶法 | 基于ATP再生系统合成PAPS | CSO产量:- CSA硫酸化度:97.00% | [ |
E. coli Rosetta (DE3) | 全细胞催化法 | 基于ATP再生系统与依赖AST IV再生 | CSO产量:- CSA转化率:89.50% | [ |
E. coli Rosetta (DE3) | 全细胞催化法 | 基于ATP再生系统与依赖AST IV再生 | CSO产量:- CSE转化率:72.20% | [ |
E. coli MG1655 | 微生物一步发酵法 | 胞内PAPS天然合成 | CSO产量:- CSA产量:27.00 μg/g DCW CSA硫酸化度:96.12% | [ |
Komagataella phaffii GS115 | 微生物一步发酵法 | 胞内PAPS天然合成 | CSO产量:189.80 mg/L CSA产量:2.10 g/L CSA硫酸化度:4.00% | [ |
E. coli BL21 STAR (DE3) | 微生物一步发酵法 | 基于AMP-PAPS循环再生途径 | CSO产量:2.95 g/L CSA产量:1.89 g/L CSA硫酸化度:76.00% | [ |
Komagataella phaffii GS115 | 微生物一步发酵法 | 基于ATP-PAPS循环再生途径 | CSA产量:1.15 g/L CSA硫酸化度:96.00% | [ |
[1] | 张茜, 王畅, 梁琛, 等. 硫酸软骨素应用于骨修复材料中的研究进展[J]. 口腔医学, 2023, 43(1): 88-91. |
[2] | ANDREWS S, CHENG A, STEVENS H, et al. Chondroitin sulfate glycosaminoglycan scaffolds for cell and recombinant protein-based bone regeneration[J]. Stem Cells Translational Medicine, 2019, 8(6): 575-585. |
[3] | SIRKO S, VON HOLST A, WIZENMANN A, et al. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells[J]. Development, 2007, 134(15): 2727-2738. |
[4] | 蓝伟, 陈建平. 硫酸软骨素的生物活性及其构效关系研究进展[J]. 食品安全质量检测学报, 2022, 13(15): 4924-4932. |
[5] | BISHNOI M, JAIN A, HURKAT P, et al. Chondroitin sulphate: a focus on osteoarthritis[J]. Glycoconjugate Journal, 2016, 33(5): 693-705. |
[6] | 田雪. 硫酸软骨素及衍生物在医药领域中的研究进展[J]. Advances in Clinical Medicine, 2020, 10(12): 2960-2973. |
[7] | 付常芳, 周伟, 高奇, 等. 硫酸软骨素及其衍生物研究进展[J]. 医药导报, 2023, 42(5): 688-691. |
[8] | SAHA S K, ZHU Y, MURRAY P, et al. Future proofing of chondroitin sulphate production: importance of sustainability and quality for the end-applications[J]. International Journal of Biological Macromolecules, 2024, 267(Pt 2): 131577. |
[9] | LI J, ZHANG J, TAN H. Microbial production of chondroitin sulfate and its derivatives[J]. Science China Life Sciences, 2025, 68(3): 871-873. |
[10] | VOLPI N. Chondroitin sulfate safety and quality[J]. Molecules, 2019, 24(8): 1447. |
[11] | STELLAVATO A, RESTAINO O F, VASSALLO V, et al. Comparative analyses of pharmaceuticals or food supplements containing chondroitin sulfate: Are their bioactivities equivalent?[J]. Advances in Therapy, 2019, 36(11): 3221-3237. |
[12] | 邹德生. 硫酸软骨素的生产工艺研究进展[J]. 现代食品, 2018(22): 22-24. |
[13] | WANG W, SHI L, QIN Y, et al. Research and application of chondroitin sulfate/dermatan sulfate-degrading enzymes[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 560442. |
[14] | WANG K, QI L, ZHAO L, et al. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application[J]. Carbohydrate Polymers, 2023, 301(Pt B): 120361. |
[15] | VALCARCEL J, NOVOA-CARBALLAL R, PÉREZ-MARTÍN R I, et al. Glycosaminoglycans from marine sources as therapeutic agents[J]. Biotechnology Advances, 2017, 35(6): 711-725. |
[16] | CRESS B F, GREENE Z R, LINHARDT R J, et al. Draft genome sequence of Escherichia coli strain ATCC 23502 (serovar O5:K4:H4)[J]. Genome Announcements, 2013, 1(2): e00046-13. |
[17] | SHEN Q, GUO Y, WANG K, et al. A review of chondroitin sulfate's preparation, properties, functions, and applications[J]. Molecules, 2023, 28(20): 7093. |
[18] | ZHOU C, MI S, LI J, et al. Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from raja porosa cartilage[J]. Carbohydrate Polymers, 2020, 241: 116306. |
[19] | TAT S K, PELLETIER J P, MINEAU F, et al. Variable effects of 3 different chondroitin sulfate compounds on human osteoarthritic cartilage/chondrocytes: Relevance of purity and production process[J]. The Journal of Rheumatology, 2010, 37(3): 656-664. |
[20] | CIMINI D, RESTAINO O F, SCHIRALDI C. Microbial production and metabolic engineering of chondroitin and chondroitin sulfate[J]. Emerging Topics in Life Sciences, 2018, 2(3): 349-361. |
[21] | YANG F, LI Y, WANG L, et al. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel[J]. Bioactive Materials, 2024, 32: 400-414. |
[22] | 田伟功, 王琳琳, 杜茜茜, 等. 低分子量硫酸软骨素体外酵解特征及其对肠道菌群的调节作用[J]. 现代食品科技, 2023, 39(10): 59-68. |
[23] | MIN D, PARK S, KIM H, et al. Potential anti‐ageing effect of chondroitin sulphate through skin regeneration[J]. International Journal of Cosmetic Science, 2020, 42(5): 520-527. |
[24] | 袁媛, 宋兵兵, 陈菁, 等. 不同来源硫酸软骨素的结构特征及抗氧化活性与降脂活性比较[J]. 食品工业科技, 2025: 1-17. |
[25] | SHIDA M, MIKAMI T, ICHI TAMURA J, et al. Chondroitin sulfate-D promotes neurite outgrowth by acting as an extracellular ligand for neuronal integrin αVβ3[J]. Biochimica Et Biophysica Acta (BBA) - General Subjects, 2019, 1863(9): 1319-1331. |
[26] | SWARUP V P, HSIAO T W, ZHANG J, et al. Exploiting differential surface display of chondroitin sulfate variants for directing neuronal outgrowth[J]. Journal of the American Chemical Society, 2013, 135(36): 13488-13494. |
[27] | FAHEEM S, HAMEED H, PAIVA-SANTOS A C, et al. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review[J]. International Journal of Biological Macromolecules, 2024, 280: 136332. |
[28] | PENG C, WANG Q, JIAO R, et al. A novel chondroitin sulfate E from dosidicus gigas cartilage and its antitumor metastatic activity[J]. Carbohydrate Polymers, 2021, 262: 117971. |
[29] | KASTANA P, CHOLEVA E, POIMENIDI E, et al. Insight into the role of chondroitin sulfate E in angiogenesis[J]. The FEBS journal, 2019, 286(15): 2921-2936. |
[30] | DEANGELIS P L, PADGETT-MCCUE A J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F[J]. Journal of Biological Chemistry, 2000, 275(31): 24124-24129. |
[31] | COUTO M R, RODRIGUES J L, RODRIGUES L R. Heterologous production of chondroitin[J]. Biotechnology Reports, 2022, 33: e00710. |
[32] | RODRIGUEZ M, JANN B, JANN K. Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose‐containing polysaccharide with a chondroitin backbone[J]. European Journal of Biochemistry, 1988, 177(1): 117-124. |
[33] | LIU J, YANG A, LIU J, et al. KfoE encodes a fructosyltransferase involved in capsular polysaccharide biosynthesis in Escherichia coli K4[J]. Biotechnology Letters, 2014, 36(7): 1469-1477. |
[34] | CIMINI D, CARLINO E, GIOVANE A, et al. Engineering a branch of the UDP‐precursor biosynthesis pathway enhances the production of capsular polysaccharide in Escherichia coli O5:K4:H4[J]. Biotechnology Journal, 2015, 10(8): 1307-1315. |
[35] | VENTURA C L, CARTEE R T, FORSEE W T, et al. Control of capsular polysaccharide chain length by UDP‐sugar substrate concentrations in Streptococcus pneumoniae [J]. Molecular Microbiology, 2006. |
[36] | GOMES A M V., NETTO J H C. M., CARVALHO L S, et al. Heterologous hyaluronic acid production in Kluyveromyces lactis [J]. Microorganisms, 2019, 7(9): 294. |
[37] | CIMINI D, RUSSO R, D'AMBROSIO S, et al. Physiological characterization and quantitative proteomic analyses of metabolically engineered E. coli K4 strains with improved pathways for capsular polysaccharide biosynthesis[J]. Biotechnology and Bioengineering, 2018, 115(7): 1801-1814. |
[38] | JIN P, ZHANG L, YUAN P, et al. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis [J]. Carbohydrate Polymers, 2016, 140: 424-432. |
[39] | D'AMBROSIO S, ALFANO A, CASSESE E, et al. Production and purification of higher molecular weight chondroitin by metabolically engineered Escherichia coli K4 strains[J]. Scientific Reports, 2020, 10(1): 13200. |
[40] | 张权, 酉相成, 陈修来, 等. 强化前体(UDP-GalNAc)合成路径提高果糖软骨素的生产[J]. 食品与生物技术学报, 2020, 39(3): 71-80. |
[41] | CHENG F, LUOZHONG S, YU H, et al. Biosynthesis of chondroitin in engineered Corynebacterium glutamicum [J]. Journal of Microbiology and Biotechnology, 2019, 29(3): 392-400. |
[42] | CIMINI D, DE ROSA M, CARLINO E, et al. Homologous overexpression of rfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide[J]. Microbial Cell Factories, 2013, 12(1): 46. |
[43] | WU Q, YANG A, ZOU W, et al. Transcriptional engineering of Escherichia coli K4 for fructosylated chondroitin production[J]. Biotechnology Progress, 2013, 29(5): 1140-1149. |
[44] | WU Y, CHEN T, LIU Y, et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis [J]. Metabolic Engineering, 2018, 49: 232-241. |
[45] | PEETERMANS A, FOULQUIÉ-MORENO M R, THEVELEIN J M. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae [J]. Microbial Cell, 2021, 8(6): 111-130. |
[46] | ZHANG Q, YAO R, CHEN X, et al. Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors[J]. Metabolic Engineering, 2018, 47: 314-322. |
[47] | ZHAO C, LI X, GUO L, et al. Reprogramming metabolic flux in Escherichia coli to enhance chondroitin production[J]. Advanced Science, 2024, 11(10): 2307351. |
[48] | DEANGELIS P L, GUNAY N S, TOIDA T, et al. Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively[J]. Carbohydrate Research, 2002, 337(17): 1547-1552. |
[49] | WANG T T, ZHU C Y, ZHENG S, et al. Identification and characterization of a chondroitin synthase from Avibacterium paragallinarum [J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4785-4797. |
[50] | GREEN D E, DEANGELIS P L. Identification of a chondroitin synthase from an unexpected source, the green sulfur bacterium Chlorobium phaeobacteroides [J]. Glycobiology, 2017, 27(5): 469-476. |
[51] | CIMINI D, FANTACCIONE S, VOLPE F, et al. IS2-mediated overexpression of kfoC in E. coli K4 increases chondroitin-like capsular polysaccharide production[J]. Applied Microbiology and Biotechnology, 2014, 98(9): 3955-3964. |
[52] | ZANFARDINO A, RESTAINO O F, NOTOMISTA E, et al. Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin[J]. Microbial Cell Factories, 2010, 9(1): 34. |
[53] | WANG Y, LI S, XU X, et al. Chemoenzymatic synthesis of homogeneous chondroitin polymers and its derivatives[J]. Carbohydrate Polymers, 2020, 232: 115822. |
[54] | AD T, Y S, E P, et al. Biosynthesis of animal-free recombinant chondroitin sulfate E using a functional chondroitin sulfotransferase in E. coli [J]. Applied Microbiology and Biotechnology, 2024, 108(1): 1-12. |
[55] | ZHOU Z, LI Q, HUANG H, et al. A microbial–enzymatic strategy for producing chondroitin sulfate glycosaminoglycans[J]. Biotechnology and Bioengineering, 2018, 115(6): 1561-1570. |
[56] | JIN X, LI Q, WANG Y, et al. Optimizing the sulfation-modification system for scale preparation of chondroitin sulfate A[J]. Carbohydrate Polymers, 2020, 246: 116570. |
[57] | 盛靖雨, 金学荣, 胥睿睿, 等. 基于工程化毕赤酵母一锅法合成硫酸软骨素a[J]. 生物工程学报, 2022, 38(7): 2594-2605. |
[58] | ZHANG W, ZHANG P, WANG H, et al. Enhancing the expression of chondroitin 4-O-sulfotransferase for one-pot enzymatic synthesis of chondroitin sulfate A[J]. Carbohydrate Polymers, 2024, 337: 122158. |
[59] | LIU H, WEI W, PANG Z, et al. Protein engineering, cofactor engineering, and surface display engineering to achieve whole-cell catalytic production of chondroitin sulfate A[J]. Biotechnology and Bioengineering, 2023, 120(7): 1784-1796. |
[60] | WANG Z, SONG W, WEI W, et al. Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E[J]. Applied and Environmental Microbiology, 2025, 91(1): e01573-24. |
[61] | BADRI A, WILLIAMS A, AWOFIRANYE A, et al. Complete biosynthesis of a sulfated chondroitin in Escherichia coli [J]. Nature Communications, 2021, 12(1): 1389. |
[62] | JIN X, ZHANG W, WANG Y, et al. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris [J]. Green Chemistry, 2021, 23(12): 4365-4374. |
[63] | GU S, ZHANG F, LI Z, et al. Engineering a novel adenine-sulfotransferase for efficient synthesis of PAPS and chondroitin sulfate in microbial cells[J]. Trends in Biotechnology, 2025. |
[64] | 赵春雷, 郭亮, 高聪, 等. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111. |
[65] | XIONG H, YANG X, ZHANG W, et al. Engineering Komagataella phaffii cell factories for the production of chondroitin sulfate a with high sulfation degree[J]. Chemical Engineering Journal, 2025, 520: 165780. |
[66] | ZHANG W, XU R, CHEN J, et al. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides[J]. International Journal of Biological Macromolecules, 2023, 253: 126551. |
[67] | BURKART M D, IZUMI M, WONG C H. Enzymatic regeneration of 3′-phosphoadenosine-5′-phosphosulfate using aryl sulfotransferase for the preparative enzymatic synthesis of sulfated carbohydrates[J]. Angewandte Chemie International Edition, 1999, 38(18): 2747-2750. |
[68] | ZHOU Z, LI Q, XU R, et al. Secretory expression of the rat aryl sulfotransferases IV with improved catalytic efficiency by molecular engineering[J]. 3 Biotech, 2019, 9(6): 246. |
[69] | BURKART M D, IZUMI M, CHAPMAN E, et al. Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides[J]. Journal of Organic Chemistry, 2000, 65(18): 5565-5574. |
[70] | LIU K, CHEN X, ZHONG Y, et al. Rational design of a highly efficient catalytic system for the production of PAPS from ATP and its application in the synthesis of chondroitin sulfate[J]. Biotechnology and Bioengineering, 2021, 118(11): 4503-4515. |
[71] | XU R, WANG Y, HUANG H, et al. Closed-loop system driven by ADP phosphorylation from pyrophosphate affords equimolar transformation of ATP to 3′-phosphoadenosine-5′-phosphosulfate[J]. ACS Catalysis, 2021, 11(16): 10405-10415. |
[72] | XU R, ZHANG W, XI X, et al. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds[J]. Nature Communications, 2023, 14(1): 7297. |
[73] | KANG H G, EVERS M R, XIA G, et al. Molecular cloning and characterization of chondroitin-4-O-sulfotransferase-3: A NOVEL MEMBER OF THE HNK-1 FAMILY OF SULFOTRANSFERASES[J]. Journal of Biological Chemistry, 2002, 277(38): 34766-34772. |
[74] | HE W, ZHU Y, SHIRKE A, et al. Expression of chondroitin-4-O-sulfotransferase in Escherichia coli and Pichia pastoris [J]. Applied Microbiology and Biotechnology, 2017, 101(18): 6919-6928. |
[75] | YUSA A, KITAJIMA K, HABUCHI O. N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1[J]. Biochemical Journal, 2005, 388(1): 115-121. |
[76] | 谢专, 张维娇, 熊海波, 等. 毕赤酵母高效表达软骨素4-O-磺基转移酶[J]. 食品与发酵工业, 2025: 1-12. |
[77] | OHTAKE S, ITO Y, FUKUTA M, et al. Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene[J]. Journal of Biological Chemistry, 2001, 276(47): 43894-43900. |
[78] | OHTAKE S, KIMATA K, HABUCHI O. Recognition of sulfation pattern of chondroitin sulfate by uronosyl 2-O-sulfotransferase[J]. Journal of Biological Chemistry, 2005, 280(47): 39115-39123. |
[79] | XU D, SONG D, PEDERSEN L C, et al. Mutational study of heparan sulfate 2-O-sulfotransferase and chondroitin sulfate 2-O-sulfotransferase [J]. Journal of Biological Chemistry, 2007, 282(11): 8356-8367. |
[80] | LI J, SU G, LIU J. Enzymatic Synthesis of Homogeneous Chondroitin Sulfate Oligosaccharides[J]. Angewandte Chemie International Edition, 2017, 56(39): 11784-11787. |
[81] | JU R, HAN B, HAN F, et al. Efficient expression and characterization of an endo-type lyase HCLase_M28 and its gradual scale-up fermentation for the preparation of chondroitin sulfate oligosaccharides[J]. Applied Biochemistry and Biotechnology, 2024, 196(9): 6526-6555. |
[82] | HONDA T, KANEIWA T, MIZUMOTO S, et al. Hyaluronidases have strong hydrolytic activity toward chondroitin 4-sulfate comparable to that for hyaluronan[J]. Biomolecules, 2012, 2(4): 549-563. |
[83] | FAN X M, ZHOU L J, HUANG J Y, et al. The structures and applications of microbial chondroitin AC lyase[J]. World Journal of Microbiology and Biotechnology, 2022, 38(11): 199. |
[84] | HAMAI A, HASHIMOTO N, MOCHIZUKI H, et al. Two distinct chondroitin sulfate ABC lyases: AN ENDOELIMINASE YIELDING TETRASACCHARIDES AND AN EXOELIMINASE PREFERENTIALLY ACTING ON OLIGOSACCHARIDES[J]. Journal of Biological Chemistry, 1997, 272(14): 9123-9130. |
[85] | YIN F X, WANG F S, SHENG J Z. Uncovering the catalytic direction of chondroitin AC exolyase[J]. Journal of Biological Chemistry, 2016, 291(9): 4399-4406. |
[86] | SUGAHARA K, TANAKA Y, YAMADA S. Preparation of a series of sulfated tetrasaccharides from shark cartilage chondroitin sulfate D using testicular hyaluronidase and structure determination by 500 MHz1H NMR spectroscopy[J]. Glycoconjugate Journal, 1996, 13(4): 609-619. |
[87] | KANEIWA T, MIZUMOTO S, SUGAHARA K, et al. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence[J]. Glycobiology, 2010, 20(3): 300-309. |
[88] | WANG H, ZHANG L, ZHANG W, et al. Secretory expression of biologically active chondroitinase ABC I for production of chondroitin sulfate oligosaccharides[J]. Carbohydrate Polymers, 2019, 224: 115135. |
[89] | CALLAWAY E. AI protein-prediction tool AlphaFold3 is now more open[J]. Nature, 2024, 635(8039): 531-532. |
[90] | CHEN L, LI Q, NASIF K F A, et al. AI-driven deep learning techniques in protein structure prediction[J]. International journal of molecular sciences, 2024, 25(15): 8426. |
[91] | Wu B, Zhong B, Zheng L, et al. Harnessing protein language model for structure-based discovery of highly efficient and robust PET hydrolases[J]. Nature Communications, 2025, 16(1): 6211. |
[92] | Albanese K I, Petrenas R, Pirro F, et al. Rationally seeded computational protein design of ɑ-helical barrels[J]. Nature Chemical Biology, 2024, 20(8): 991-999. |
[1] | WU Ke, LUO Jiahao, LI Feiran. Applications of machine learning in the reconstruction and curation of genome-scale metabolic models [J]. Synthetic Biology Journal, 2025, 6(3): 566-584. |
[2] | TIAN Xiao-jun, ZHANG Rixin. “Economics Paradox” with cells in synthetic gene circuits [J]. Synthetic Biology Journal, 2025, 6(3): 532-546. |
[3] | LI Yongzhu, CHEN Yu. Advances and prospects in genome-scale models of yeast [J]. Synthetic Biology Journal, 2025, 6(3): 585-602. |
[4] | ZHANG Yiqing, LIU Gaowen. Exploration of gene functions and library construction for engineering strains from a synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(3): 685-700. |
[5] | YANG Ying, LI Xia, LIU Lizhong. Applications of synthetic biology to stem-cell-derived modeling of early embryonic development [J]. Synthetic Biology Journal, 2025, 6(3): 669-684. |
[6] | HUANG Yi, SI Tong, LU Anjing. Standardization for biomanufacturing: global landscape, critical challenges, and pathways forward [J]. Synthetic Biology Journal, 2025, 6(3): 701-714. |
[7] | SONG Chengzhi, LIN Yihan. AI-enabled directed evolution for protein engineering and optimization [J]. Synthetic Biology Journal, 2025, 6(3): 617-635. |
[8] | GAO Qi, XIAO Wenhai. Advances in the biosynthesis of monoterpenes by yeast [J]. Synthetic Biology Journal, 2025, 6(2): 357-372. |
[9] | ZHANG Mengyao, CAI Peng, ZHOU Yongjin. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors [J]. Synthetic Biology Journal, 2025, 6(2): 334-356. |
[10] | ZHANG Lu’ou, XU Li, HU Xiaoxu, YANG Ying. Synthetic biology ushers cosmetic industry into the “bio-cosmetics” era [J]. Synthetic Biology Journal, 2025, 6(2): 479-491. |
[11] | YI Jinhang, TANG Yulin, LI Chunyu, WU Heyun, MA Qian, XIE Xixian. Applications and advances in the research of biosynthesis of amino acid derivatives as key ingredients in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 254-289. |
[12] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[13] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
[14] | WANG Qian, GUO Shiting, XIN Bo, ZHONG Cheng, WANG Yu. Advances in biosynthesis of L-arginine using engineered microorganisms [J]. Synthetic Biology Journal, 2025, 6(2): 290-305. |
[15] | ZUO Yimeng, ZHANG Jiaojiao, LIAN Jiazhang. Enabling technology for the biosynthesis of cosmetic raw materials with Saccharomyces cerevisiae [J]. Synthetic Biology Journal, 2025, 6(2): 233-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||