Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (4): 454-469.DOI: 10.12211/2096-8280.2020-026
• Invited Review • Previous Articles Next Articles
Rongzhen TIAN1,2, Yanfeng LIU1,2, Jianghua LI2, Long LIU1,2, Guocheng DU1,2
Received:
2020-03-15
Revised:
2020-06-21
Online:
2020-10-09
Published:
2020-08-31
Contact:
Guocheng DU
田荣臻1,2, 刘延峰1,2, 李江华2, 刘龙1,2, 堵国成1,2
通讯作者:
堵国成
作者简介:
田荣臻(1995—),男,博士研究生,研究方向为发酵工程。E-mail:基金资助:
CLC Number:
Rongzhen TIAN, Yanfeng LIU, Jianghua LI, Long LIU, Guocheng DU. Progress in the regulatory tools of gene expression for model microorganisms[J]. Synthetic Biology Journal, 2020, 1(4): 454-469.
田荣臻, 刘延峰, 李江华, 刘龙, 堵国成. 典型模式微生物基因表达精细调控工具的研究进展[J]. 合成生物学, 2020, 1(4): 454-469.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-026
1 |
KENT R, DIXON N. Contemporary tools for regulating gene expression in bacteria [J]. Trends in Biotechnology, 2020, 38(3): 316-333. DOI: 10.1016/j.tibtech.2019.09.007.
DOI |
2 |
TYO K E, ALPER H S, STEPHANOPOULOS G N. Expanding the metabolic engineering toolbox: more options to engineer cells [J]. Trends in Biotechnology, 2007, 25(3): 132-137. DOI: 10.1016/j.tibtech.2007.01.003.
DOI |
3 |
YANG Sen, DU Guocheng, CHEN Jian, et al. Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis [J]. Applied Microbiology and Biotechnology, 2017, 101(10): 4151-4161. DOI: 10.1007/s00253-017-8142-7.
DOI |
4 |
ALPER H, FISCHER C, NEVOIGT E, et al. Tuning genetic control through promoter engineering [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678. DOI: 10.1073/pnas.0504604102.
DOI |
5 |
REZNIKOFF W S. The lactose operon-controlling elements: a complex paradigm [J]. Molecular Microbiology, 1992, 6(17): 2419-2422. DOI: 10.1111/j.1365-2958.1992.tb01416.x.
DOI |
6 |
GUIZIOU S, SAUVEPLANE V, CHANG Hung-Ju, et al. A part toolbox to tune genetic expression in Bacillus subtilis [J]. Nucleic Acids Research, 2016, 44(15): 7495-7508. DOI: 10.1093/nar/gkw624.
DOI |
7 |
SALIS H M, MIRSKY E A, VOIGT C A. Automated design of synthetic ribosome binding sites to control protein expression [J]. Nature Biotechnology, 2009, 27(10): 946-950. DOI: 10.1038/nbt.1568.
DOI |
8 |
SINUMVAYO J P, 杨森, 陈坚, 等. 枯草芽孢杆菌168新型转录终止子的构建与表征[J]. 生物工程学报, 2017, 33(7): 1091-1100. DOI: 10.13345/j.cjb.160484.
DOI |
SINUMVAYO J P, YANG S, CHEN J, et al. Engineering and characterization of new intrinsic transcriptional terminators in Bacillus subtilis 168 [J]. Chinese Journal of Biotechnology, 2017, 33(7): 1091-1100. DOI: 10.13345/j.cjb.160484.
DOI |
|
9 |
POPE S D, MEDZHITOV R. Emerging principles of gene expression programs and their regulation [J]. Molecular Cell, 2018, 71(3): 389-397. DOI: 10.1016/j.molcel.2018.07.017.
DOI |
10 |
LU Zhenghui, YANG Shihui, YUAN Xin, et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis [J]. Nucleic acids research, 2019, 47(7): e40. DOI: 10.1093/nar/gkz072.
DOI |
11 |
YANG Sen, LIU Qingtao, ZHANG Yunfeng, et al. Construction and characterization of broad-spectrum promoters for synthetic biology [J]. ACS Synthetic Biology, 2018, 7(1): 287-291. DOI: 10.1021/acssynbio.7b00258.
DOI |
12 |
PAPENFORT K, VANDERPOOL C K. Target activation by regulatory RNAs in bacteria [J]. FEMS Microbiology Reviews, 2015, 39(3): 362-378. DOI: 10.1093/femsre/fuv016.
DOI |
13 |
BREAKER R R. Riboswitches and translation control [J]. Cold Spring Harbor Perspectives in Biology, 2018, 10(11). DOI: 10.1101/cshperspect.a032797.
DOI |
14 |
MANDAL M, BREAKER R R. Gene regulation by riboswitches [J]. Nature Reviews Molecular Cell Biology, 2004, 5(6): 451-463. DOI: 10.1038/nrm1403.
DOI |
15 |
CARON M P, BASTET L, LUSSIER A, et al. Dual-acting riboswitch control of translation initiation and mRNA decay [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): E3444-E3453. DOI: 10.1073/pnas.1214024109.
DOI |
16 |
JANG Sungho, JUNG Gyoo Yeol. Systematic optimization of L-tryptophan riboswitches for efficient monitoring of the metabolite in Escherichia coli [J]. Biotechnology and Bioengineering, 2018, 115(1): 266-271. DOI: 10.1002/bit.26448.
DOI |
17 |
JANG Sungho, JANG Sungyeon, XIU Yu, et al. Development of artificial riboswitches for monitoring of naringenin in vivo [J]. ACS Synthetic Biology, 2017, 6(11): 2077-2085. DOI: 10.1021/acssynbio.7b00128.
DOI |
18 |
XIU Yu, JANG Sungho, JONES J A, et al. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures [J]. Biotechnology and Bioengineering, 2017, 114(10): 2235-2244. DOI: 10.1002/bit.26340.
DOI |
19 |
CAI Yao, HU Huasi, PAN Ziheng, et al. Metaheuristic optimization in shielding design for neutrons and gamma rays reducing dose equivalent as much as possible [J]. Annals of Nuclear Energy, 2018, 120: 27-34. DOI: 10.1016/j.anucene.2018.05.038.
DOI |
20 |
BURKE-AGUERO D H. Methods in enzymology : riboswitches as targets and tools [J]. Methods in Enzymology, 2015. DOI: 10.1016/S0076-6879(15)00012-9.
DOI |
21 | SEDLYAROVA N, SHAMOVSKY I, BHARATI B K, et al. sRNA-mediated control of transcription termination in E. coli [J]. Cell, 2016, 167(1): 111-121. e13. DOI: 10.1016/j.cell.2016.09.004. |
22 |
Young Je LEE, HOYNES-O'CONNOR A, LEONG M C, et al. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system [J]. Nucleic Acids Research, 2016, 44(5): 2462-2473. DOI: 10.1093/nar/gkw056.
DOI |
23 |
YANG Yaping, LIN Yuheng, LI Lingyun, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products [J]. Metabolic Engineering, 2015, 29: 217-226. DOI: 10.1016/j.ymben.2015.03.018.
DOI |
24 |
NAKASHIMA N, TAMURA T, GOOD L. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli [J]. Nucleic Acids Research, 2006, 34(20): e138-e138. DOI: 10.1093/nar/gkl697.
DOI |
25 |
SHERWOOD A V, HENKIN T M. Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses [J]. Annual Review of Microbiology, 2016, 70(1): 361-374. DOI: 10.1146/annurev-micro-091014-104306.
DOI |
26 |
RÖTHLISBERGER P, HOLLENSTEIN M. Aptamer chemistry [J]. Advanced Drug Delivery Reviews, 2018, 134: 3-21. DOI: 10.1016/j.addr.2018.04.007.
DOI |
27 |
ABOUL-ELA F, HUANG Wei, ELRAHMAN M A, et al. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design [J]. Wiley Interdisciplinary Reviews. RNA, 2015, 6(6): 631-650. DOI: 10.1002/wrna.1300.
DOI |
28 |
WANG j, YANG Le, CUI Xun, et al. A DNA bubble-mediated gene regulation system based on thrombin-bound DNA aptamers [J]. ACS Synthetic Biology, 2017, 6(5): 758-765. DOI: 10.1021/acssynbio.6b00391.
DOI |
29 |
DENG Jieying, CHEN Chunmei, GU Yang, et al. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis [J]. Metabolic Engineering, 2019, 55: 179-190. DOI: 10.1016/j.ymben.2019.07.008.
DOI |
30 |
GOODMAN D B, CHURCH G M, KOSURI S. Causes and effects of N-terminal codon bias in bacterial genes [J]. Science, 2013, 342(6157): 475. DOI: 10.1126/science.1241934.
DOI |
31 |
KUDLA G, MURRAY A W, TOLLERVEY D, et al. Coding-sequence determinants of gene expression in Escherichia coli [J]. Science, 2009, 324(5924): 255. DOI: 10.1126/science.1170160.
DOI |
32 |
SAUER C, THEMAAT E V L VAN, BOENDER L G M, et al. Exploring the nonconserved sequence space of synthetic expression modules in Bacillus subtilis [J]. ACS Synthetic Biology, 2018, 7(7): 1773-1784. DOI: 10.1021/acssynbio.8b00110.
DOI |
33 |
ESPAH BORUJENI A, SALIS H M. Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism [J]. Journal of the American Chemical Society, 2016, 138(22): 7016-7023. DOI: 10.1021/jacs.6b01453.
DOI |
34 |
BORUJENI A E, CETNAR D, FARASAT I, et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences [J]. Nucleic Acids Research, 2017, 45(9): 5437-5448. DOI: 10.1093/nar/gkx061.
DOI |
35 |
DOUGAN D A, TRUSCOTT K N, ZETH K. The bacterial N-end rule pathway: expect the unexpected [J]. Molecular Microbiology, 2010, 76(3): 545-558. DOI: 10.1111/j.1365-2958.2010.07120.x.
DOI |
36 |
LU Jianli, DEUTSCH C. Electrostatics in the ribosomal tunnel modulate chain elongation rates [J]. Journal of Molecular Biology, 2008, 384(1): 73-86. DOI: 10.1016/j.jmb.2008.08.089.
DOI |
37 |
SHARMA A K, BUKAU B, O'BRIEN E P. Physical origins of codon positions that strongly influence cotranslational folding: a framework for controlling nascent-protein folding [J]. Journal of the American Chemical Society, 2016, 138(4): 1180-1195. DOI: 10.1021/jacs.5b08145.
DOI |
38 | TOBIAS J W, SHRADER T E, ROCAP G, et al. The N-end rule in bacteria [J]. Science, 1991, 254(5036): 1374-1377. |
39 |
ZADEH J N, STEENBERG C D, BOIS J S, et al. NUPACK: analysis and design of nucleic acid systems [J]. Journal of Computational Chemistry, 2011, 32(1): 170-173. DOI: 10.1002/jcc.21596.
DOI |
40 |
CAMBRAY G, GUIMARAES J C, ARKIN A P. Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli [J]. Nature Biotechnology, 2018, 36(10): 1005-1015. DOI: 10.1038/nbt.4238.
DOI |
41 |
TIAN Rongzhen, LIU Yanfeng, CHEN Junrong, et al. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis [J]. Metabolic Engineering, 2019, 55: 131-141. DOI: 10.1016/j.ymben.2019.07.001.
DOI |
42 |
XU Peng. Production of chemicals using dynamic control of metabolic fluxes [J]. Current Opinion in Biotechnology, 2018, 53: 12-19. DOI: 10.1016/j.copbio.2017.10.009.
DOI |
43 |
HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways [J]. Cell, 2010, 140(1): 19-23. DOI: 10.1016/j.cell.2009.12.029.
DOI |
44 |
ALPER H, STEPHANOPOULOS G. Global transcription machinery engineering: a new approach for improving cellular phenotype [J]. Metabolic Engineering, 2007, 9(3): 258-267. DOI: 10.1016/j.ymben.2006.12.002.
DOI |
45 |
MY L, ACHKAR N G, VIALA J P, et al. Reassessment of the genetic regulation of fatty acid synthesis in Escherichia coli: global positive control by the dual functional regulator FadR [J]. Journal of Bacteriology, 2015, 197(11): 1862-1872. DOI: 10.1128/JB.00064-15.
DOI |
46 |
KURODA K, UEDA M. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering, 2017, 124(6): 599-605. DOI: 10.1016/j.jbiosc.2017.06.010.
DOI |
47 |
NGUYEN-VO T P, LIANG Yunxiao, SANKARANARAYANAN M, et al. Development of 3-hydroxypropionic-acid-tolerant strain of Escherichia coli W and role of minor global regulator yieP [J]. Metabolic Engineering, 2019, 53: 48-58. DOI: 10.1016/j.ymben.2019.02.001.
DOI |
48 |
BRINSMADE S R, ALEXANDER E L, LIVNY J, et al. Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22): 8227. DOI: 10.1073/pnas.1321308111.
DOI |
49 |
CAO Haojie, KUIPERS O P. Influence of global gene regulatory networks on single cell heterogeneity of green fluorescent protein production in Bacillus subtilis [J]. Microbial Cell Factories, 2018, 17(1): 134. DOI: 10.1186/s12934-018-0985-9.
DOI |
50 |
ZHU Liying, GAO Shan, ZHANG Hongman, et al. Improvement of lead tolerance of Saccharomyces cerevisiae by random mutagenesis of transcription regulator SPT3 [J]. Applied Biochemistry and Biotechnology, 2018, 184(1): 155-167. DOI: 10.1007/s12010-017-2531-3.
DOI |
51 |
PARK Kyung-Soon, Dong-ki LEE, Horim LEE, et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors [J]. Nature Biotechnology, 2003, 21(10): 1208-1214. DOI: 10.1038/nbt868.
DOI |
52 |
ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production [J]. Science, 2006, 314(5805): 1565. DOI: 10.1126/science.1131969.
DOI |
53 |
BURGESS R R, ANTHONY L. How sigma docks to RNA polymerase and what sigma does [J]. Current Opinion in Microbiology, 2001, 4(2): 126-131. DOI: 10.1016/S1369-5274(00)00177-6.
DOI |
54 |
GAO Xi, JIANG Ling, ZHU Liying, et al. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs [J]. Journal of Biotechnology, 2016, 224: 55-63. DOI: 10.1016/j.jbiotec.2016.03.012.
DOI |
55 |
ADHIKARI S, CURTIS P D. DNA methyltransferases and epigenetic regulation in bacteria [J]. FEMS Microbiology Reviews, 2016, 40(5): 575-591. DOI: 10.1093/femsre/fuw023.
DOI |
56 |
KANG Jeong Gu, PARK Jin Suk, Jeong-Heosn KO, et al. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system [J]. Scientific Reports, 2019, 9(1): 11960. DOI: 10.1038/s41598-019-48130-3.
DOI |
57 |
GRUNSTEIN M, GASSER S M. Epigenetics in Saccharomyces cerevisiae [J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(7): a017491. DOI: 10.1101/cshperspect.a017491.
DOI |
58 |
CHEN Chao, WANG Lianrong, CHEN Si, et al. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4501-4506. DOI: 10.1073/pnas.1702450114.
DOI |
59 |
LAL A, KRISHNA S, SESHASAYEE A S N. Regulation of global transcription in Escherichia coli by Rsd and 6S RNA [J]. G3: Genes, Genomes, Genetics, 2018, 8(6): 2079-2089. DOI: 10.1534/g3.118.200265.
DOI |
60 |
WASSARMAN K M, STORZ G. 6S RNA Regulates E. coli RNA polymerase activity [J]. Cell, 2000, 101(6): 613-623. DOI: 10.1016/S0092-8674(00)80873-9.
DOI |
61 |
WASSARMAN K M. 6S RNA, a global regulator of transcription [J]. Microbiology Spectrum, 2018, 6(3): 10.1128/microbiolspec. RWR-0019-2018. DOI: 10.1128/microbiolspec.RWR-0019-2018.
DOI |
62 |
CAVANAGH A T, WASSARMAN K M. 6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond [J]. Annual Review of Microbiology, 2014, 68(1): 45-60. DOI: 10.1146/annurev-micro-092611-150135.
DOI |
63 |
QI Lei S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell, 2013, 152(5): 1173-1183. DOI: 10.1016/j.cell.2013.02.022.
DOI |
64 |
RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system [J]. Nature Protocols, 2013, 8(11): 2281-2308. DOI: 10.1038/nprot.2013.143.
DOI |
65 |
HSU P D, LANDER E S, ZHANG Feng. Development and applications of CRISPR-Cas9 for genome engineering [J]. Cell, 2014, 157(6): 1262-1278. DOI: 10.1016/j.cell.2014.05.010.
DOI |
66 |
LIU Yang, WAN Xinyi, WANG Baojun. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria [J]. Nature Communications, 2019, 10(1): 3693. DOI: 10.1038/s41467-019-11479-0.
DOI |
67 |
LIAN Jiazhang, HAMEDIRAD M, HU Sumeng, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system [J]. Nature Communications, 2017, 8(1): 1688. DOI: 10.1038/s41467-017-01695-x.
DOI |
68 |
WU Yaokang, CHEN Taichi, LIU Yanfeng, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis [J]. Nucleic Acids Research, 2019, 48(2): 996-1009. DOI: 10.1093/nar/gkz1123.
DOI |
69 |
FENNO L, YIZHAR O, DEISSEROTH K. The development and application of optogenetics [J]. Annual Review of Neuroscience, 2011, 34: 389-412. DOI: 10.1146/annurev-neuro-061010-113817.
DOI |
70 |
BACCHUS W, FUSSENEGGER M. The use of light for engineered control and reprogramming of cellular functions [J]. Current Opinion in Biotechnology, 2012, 23(5): 695-702. DOI: 10.1016/j.copbio.2011.12.004.
DOI |
71 |
OLSON E J, TABOR J J. Optogenetic characterization methods overcome key challenges in synthetic and systems biology [J]. Nature Chemical Biology, 2014, 10(7): 502-511. DOI: 10.1038/nchembio.1559.
DOI |
72 |
PATHAK G P, VRANA J D, TUCKER C L. Optogenetic control of cell function using engineered photoreceptors [J]. Biology of the Cell, 2013, 105(2): 59-72. DOI: 10.1111/boc.201200056.
DOI |
73 |
ZHAO E M, ZHANG Yanfei, MEHL J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production [J]. Nature, 2018, 555(7698): 683-687. DOI: 10.1038/nature26141.
DOI |
74 |
SHIMIZU-SATO S, HUQ E, TEPPERMAN J M, et al. A light-switchable gene promoter system [J]. Nature Biotechnology, 2002, 20(10): 1041-1044. DOI: 10.1038/nbt734.
DOI |
75 |
MOTTA-MENA L B, READE A, MALLORY M J, et al. An optogenetic gene expression system with rapid activation and deactivation kinetics [J]. Nature Chemical Biology, 2014, 10(3): 196-202. DOI: 10.1038/nchembio.1430.
DOI |
76 |
SHIN Yongdae, BERRY J, PANNUCCI N, et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets [J]. Cell, 2017, 168(1/2): 159-171.e14. DOI: 10.1016/j.cell.2016.11.054.
DOI |
77 |
TABOR J J, LEVSKAYA A, VOIGT C A. Multichromatic control of gene expression in Escherichia coli [J]. Journal of Molecular Biology, 2011, 405(2): 315-324. DOI: 10.1016/j.jmb.2010.10.038.
DOI |
78 |
MILIAS-ARGEITIS A, RULLAN M, AOKI S K, et al. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth [J]. Nature Communications, 2016, 7: 12546. DOI: 10.1038/ncomms12546.
DOI |
79 |
CASTILLO-HAIR S M, BAERMAN E A, FUJITA M, et al. Optogenetic control of Bacillus subtilis gene expression [J]. Nature Communications, 2019, 10(1): 3099. DOI: 10.1038/s41467-019-10906-6.
DOI |
80 |
GAO Cong, HOU Jianshen, XU Peng, et al. Programmable biomolecular switches for rewiring flux in Escherichia coli [J]. Nature Communications, 2019, 10(1): 3751. DOI: 10.1038/s41467-019-11793-7.
DOI |
81 |
CAMERON D E, COLLINS J J. Tunable protein degradation in bacteria [J]. Nature Biotechnology, 2014, 32(12): 1276-1281. DOI: 10.1038/nbt.3053.
DOI |
82 |
CHUNG Hokyung K, JACOBS C L, HUO Yunwen, et al. Tunable and reversible drug control of protein production via a self-excising degron [J]. Nature Chemical Biology, 2015, 11(9): 713-720. DOI: 10.1038/nchembio.1869.
DOI |
83 |
DOONG S J, GUPTA A, PRATHER K L J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2964-2969. DOI: 10.1073/pnas.1716920115.
DOI |
84 |
MARTÍNEZ V, LAURITSEN I, HOBEL T, et al. CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability [J]. Nucleic Acids Research, 2017, 45(20): e171-e171. DOI: 10.1093/nar/gkx797.
DOI |
85 |
FERNANDEZ-RODRIGUEZ J, VOIGT C A. Post-translational control of genetic circuits using Potyvirus proteases [J]. Nucleic Acids Research, 2016, 44(13): 6493-6502. DOI: 10.1093/nar/gkw537.
DOI |
86 |
TAN S Z, PRATHER K L J. Dynamic pathway regulation:recent advances and methods of construction [J]. Current Opinion in Chemical Biology, 2017, 41: 28-35. DOI: 10.1016/j.cbpa.2017.10.004.
DOI |
87 |
WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research [J]. Nature, 2017, 551(7680): 313-320. DOI: 10.1038/nature24624.
DOI |
88 |
SOMA Y, HANAI T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production [J]. Metabolic Engineering, 2015, 30: 7-15. DOI: 10.1016/j.ymben.2015.04.005.
DOI |
89 |
GUPTA A, REIZMAN I M B, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit [J]. Nature biotechnology, 2017, 35(3): 273-279. DOI: 10.1038/nbt.3796.
DOI |
90 |
CUI Shixiu, Xueqin LÜ, WU Yaokang, et al. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis [J]. ACS Synthetic Biology, 2019, 8(8): 1826-1837. DOI: 10.1021/acssynbio.9b00140.
DOI |
91 |
WILLIAMS T C, AVERESCH N, WINTER G, et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 29: 124-134. DOI: 10.1016/j.ymben.2015.03.008.
DOI |
92 |
XU Peng, LI Lingyun, ZHANG Fuming, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11299-11304. DOI: 10.1073/pnas.1406401111.
DOI |
93 |
RUGBJERG P, SARUP-LYTZEN K, NAGY M, et al. Synthetic addiction extends the productive life time of engineered Escherichia coli populations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2347. DOI: 10.1073/pnas.1718622115.
DOI |
94 |
SANDBERG T E, SALAZAR M J, WENG L L, et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology [J]. Metabolic Engineering, 2019, 56: 1-16. DOI: 10.1016/j.ymben.2019.08.004.
DOI |
95 |
BUERGER J, GRONENBERG L S, GENEE H J, et al. Wiring cell growth to product formation [J]. Current Opinion in Biotechnology, 2019, 59: 85-92. DOI: 10.1016/j.copbio.2019.02.014.
DOI |
96 |
CHOU H H, KEASLING J D. Programming adaptive control to evolve increased metabolite production [J]. Nature Communications, 2013, 4(1): 2595. DOI: 10.1038/ncomms3595.
DOI |
97 |
LEAVITT J M, WAGNER J M, TU C C, et al. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae [J]. Biotechnology Journal, 2017, 12(10): 1600687. DOI: 10.1002/biot.201600687.
DOI |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[8] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[9] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[10] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[11] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[12] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[13] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[14] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
[15] | Hailong LV, Jian WANG, Hao LV, Jin WANG, Yong XU, Dayong GU. Synthetic biology for next-generation genetic diagnostics [J]. Synthetic Biology Journal, 2023, 4(2): 318-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||