Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (2): 338-352.DOI: 10.12211/2096-8280.2023-054
• Invited Review • Previous Articles Next Articles
Jingqin YE, Wenhua HUANG, Chao PAN, Li ZHU, Hengliang WANG
Received:
2023-08-09
Revised:
2023-11-02
Online:
2024-04-28
Published:
2024-04-30
Contact:
Hengliang WANG
叶精勤, 黄文华, 潘超, 朱力, 王恒樑
通讯作者:
王恒樑
作者简介:
基金资助:
CLC Number:
Jingqin YE, Wenhua HUANG, Chao PAN, Li ZHU, Hengliang WANG. Applications of synthetic biology in developing polysaccharide conjugate vaccines[J]. Synthetic Biology Journal, 2024, 5(2): 338-352.
叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-054
菌株 | 抗原 | 载体蛋白 | 偶联技术 | 研究阶段 |
---|---|---|---|---|
B型流感嗜血杆菌 | 天然多糖 | TT | 化学偶联 | 已授权 |
寡糖 | CRM197 | 化学偶联 | 已授权 | |
C型脑膜炎奈瑟氏菌 | 天然多糖 | TT | 化学偶联 | 已授权 |
寡糖 | CRM197 | 化学偶联 | 已授权 | |
ACWY型脑膜炎奈瑟氏菌 | 寡糖 | CRM197 | 化学偶联 | 已授权 |
肺炎链球菌 | 天然多糖 | PD, DT, TT | 化学偶联 | 已授权 |
肺炎链球菌 | 天然多糖 | 链霉亲和素融合蛋白 | 生物偶联 | 临床Ⅱ期 |
肠外致病大肠杆菌 | 寡糖 | EPA | 生物偶联 | 临床Ⅲ期 |
志贺氏菌2a | 寡糖 | EPA | 生物偶联 | 临床Ⅰ期 |
寡糖 | TT | 化学反应 | 临床Ⅰ期 | |
肺炎克雷伯氏菌 | O-抗原寡糖 | EPA | 生物偶联 | 临床Ⅰ期 |
Table 1 Summary of carrier proteins used in polysaccharide conjugate vaccines
菌株 | 抗原 | 载体蛋白 | 偶联技术 | 研究阶段 |
---|---|---|---|---|
B型流感嗜血杆菌 | 天然多糖 | TT | 化学偶联 | 已授权 |
寡糖 | CRM197 | 化学偶联 | 已授权 | |
C型脑膜炎奈瑟氏菌 | 天然多糖 | TT | 化学偶联 | 已授权 |
寡糖 | CRM197 | 化学偶联 | 已授权 | |
ACWY型脑膜炎奈瑟氏菌 | 寡糖 | CRM197 | 化学偶联 | 已授权 |
肺炎链球菌 | 天然多糖 | PD, DT, TT | 化学偶联 | 已授权 |
肺炎链球菌 | 天然多糖 | 链霉亲和素融合蛋白 | 生物偶联 | 临床Ⅱ期 |
肠外致病大肠杆菌 | 寡糖 | EPA | 生物偶联 | 临床Ⅲ期 |
志贺氏菌2a | 寡糖 | EPA | 生物偶联 | 临床Ⅰ期 |
寡糖 | TT | 化学反应 | 临床Ⅰ期 | |
肺炎克雷伯氏菌 | O-抗原寡糖 | EPA | 生物偶联 | 临床Ⅰ期 |
1 | ANDRIANANTOANDRO E, BASU S, KARIG D K, et al. Synthetic biology: new engineering rules for an emerging discipline[J]. Molecular Systems Biology, 2006, 2: 2006.0028. |
2 | BRENNER K, YOU L C, ARNOLD F H. Engineering microbial consortia: a new frontier in synthetic biology[J]. Trends in Biotechnology, 2008, 26(9): 483-489. |
3 | JAROENTOMEECHAI T, TAW M N, LI M J, et al. Cell-free synthetic glycobiology: designing and engineering glycomolecules outside of living cells[J]. Frontiers in Chemistry, 2020, 8: 645. |
4 | KHOURY G A, BALIBAN R C, FLOUDAS C A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database[J]. Scientific Reports, 2011, 1: 90. |
5 | HELENIUS A, AEBI A M. Intracellular functions of N-linked glycans[J]. Science, 2001, 291(5512): 2364-2369. |
6 | RUDD P M, WORMALD M R, STANFIELD R L, et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition[J]. Journal of Molecular Biology, 1999, 293(2): 351-366. |
7 | TYTGAT H L P, LEBEER S. The sweet tooth of bacteria: common themes in bacterial glycoconjugates[J]. Microbiology and Molecular Biology Reviews: MMBR, 2014, 78(3): 372-417. |
8 | STRENG-OUWEHAND I, HO N I, LITJENS M, et al. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells[J]. eLife, 2016, 5: e11765. |
9 | PHANSE Y, CARRILLO-CONDE B R, RAMER-TAIT A E, et al. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms[J]. Scientific Reports, 2014, 4: 3775. |
10 | ELLIOTT S, LORENZINI T, ASHER S, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering[J]. Nature Biotechnology, 2003, 21(4): 414-421. |
11 | OHTSUBO K, MARTH J D. Glycosylation in cellular mechanisms of health and disease[J]. Cell, 2006, 126(5): 855-867. |
12 | ZHANG Q, JOHNSTON E V, SHIEH J H, et al. Synthesis of granulocyte-macrophage colony-stimulating factor as homogeneous glycoforms and early comparisons with yeast cell-derived material[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2885-2890. |
13 | CHUNG C H, MIRAKHUR B, CHAN E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose[J]. New England Journal of Medicine, 2008, 358(11): 1109-1117. |
14 | LI H J, SETHURAMAN N, STADHEIM T A, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris [J]. Nature Biotechnology, 2006, 24(2): 210-215. |
15 | TIAN W H, YE Z L, WANG S J, et al. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells[J]. Nature Communications, 2019, 10: 1785. |
16 | ABREU A G, BARBOSA A S. How Escherichia coli circumvent complement-mediated killing[J]. Frontiers in Immunology, 2017, 8: 452. |
17 | BUNDLE D. Antibacterials: a sweet vaccine[J]. Nature Chemistry, 2016, 8(3): 201-202. |
18 | SZYMANSKI C M, YAO R J, EWING C P, et al. Evidence for a system of general protein glycosylation in Campylobacter jejuni [J]. Molecular Microbiology, 1999, 32(5): 1022-1030. |
19 | PARKHILL J, WREN B W, MUNGALL K, et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences[J]. Nature, 2000, 403(6770): 665-668. |
20 | FELDMAN M F, WACKER M, HERNANDEZ M, et al. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(8): 3016-3021. |
21 | BERTANI B, RUIZ N. Function and biogenesis of lipopolysaccharides[J]. EcoSal Plus, 2018, 8(1): ESP-0001-2018. |
22 | WHITFIELD C, WEAR S S, SANDE C. Assembly of bacterial capsular polysaccharides and exopolysaccharides[J]. Annual Review of Microbiology, 2020, 74: 521-543. |
23 | KOWARIK M, YOUNG N M, NUMAO S, et al. Definition of the bacterial N-glycosylation site consensus sequence[J]. The EMBO Journal, 2006, 25(9): 1957-1966. |
24 | IHSSEN J, KOWARIK M, DILETTOSO S, et al. Production of glycoprotein vaccines in Escherichia coli [J]. Microbial Cell Factories, 2010, 9: 61. |
25 | HATZ C F R, BALLY B, ROHRER S, et al. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: a single blind, partially randomized Phase Ⅰ study[J]. Vaccine, 2015, 33(36): 4594-4601. |
26 | RAVENSCROFT N, BRAUN M, SCHNEIDER J, et al. Characterization and immunogenicity of a Shigella flexneri 2a O-antigen bioconjugate vaccine candidate[J]. Glycobiology, 2019, 29(9): 669-680. |
27 | VAN DEN DOBBELSTEEN G P J M, FAÉ K C, SERROYEN J, et al. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models[J]. Vaccine, 2016, 34(35): 4152-4160. |
28 | MARSHALL L E, NELSON M, DAVIES C H, et al. An O-antigen glycoconjugate vaccine produced using protein glycan coupling technology is protective in an inhalational rat model of tularemia[J]. Journal of Immunology Research, 2018, 2018: 8087916. |
29 | GARCIA-QUINTANILLA F, IWASHKIW J A, PRICE N L, et al. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery[J]. Frontiers in Microbiology, 2014, 5: 381. |
30 | IWASHKIW J A, FENTABIL M A, FARIDMOAYER A, et al. Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis[J]. Microbial Cell Factories, 2012, 11: 13. |
31 | WACKER M, WANG L H, KOWARIK M, et al. Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli [J]. The Journal of Infectious Diseases, 2014, 209(10): 1551-1561. |
32 | HERBERT J A, KAY E J, FAUSTINI S E, et al. Production and efficacy of a low-cost recombinant pneumococcal protein polysaccharide conjugate vaccine[J]. Vaccine, 2018, 36(26): 3809-3819. |
33 | LIZAK C, GERBER S, NUMAO S, et al. X-ray structure of a bacterial oligosaccharyltransferase[J]. Nature, 2011, 474(7351): 350-355. |
34 | NAPIÓRKOWSKA M, BOILEVIN J, SOVDAT T, et al. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase[J]. Nature Structural & Molecular Biology, 2017, 24(12): 1100-1106. |
35 | IHSSEN J, HAAS J, KOWARIK M, et al. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering[J]. Open Biology, 2015, 5(4): 140227. |
36 | STIMSON E, VIRJI M, BARKER S, et al. Discovery of a novel protein modification: α-glycerophosphate is a substituent of meningococcal pilin[J]. Biochemical Journal, 1996, 316(1): 29-33. |
37 | FARIDMOAYER A, FENTABIL M A, MILLS D C, et al. Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation[J]. Journal of Bacteriology, 2007, 189(22): 8088-8098. |
38 | FARIDMOAYER A, FENTABIL M A, HAURAT M F, et al. Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation[J]. Journal of Biological Chemistry, 2008, 283(50): 34596-34604. |
39 | PAN C, SUN P, LIU B, et al. Biosynthesis of conjugate vaccines using an O-linked glycosylation system[J]. mBio, 2016, 7(2): e00443-16. |
40 | SUN P, PAN C, ZENG M, et al. Design and production of conjugate vaccines against S. Paratyphi A using an O-linked glycosylation system in vivo [J]. NPJ Vaccines, 2018, 3: 4. |
41 | LI S L, HUANG J, WANG K F, et al. A bioconjugate vaccine against Brucella abortus produced by engineered Escherichia coli [J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1121074. |
42 | LIU Y, PAN C, WANG K F, et al. Preparation of a Klebsiella pneumoniae conjugate nanovaccine using glycol-engineered Escherichia coli [J]. Microbial Cell Factories, 2023, 22(1): 95. |
43 | SCHULZ B L, JEN F E C, POWER P M, et al. Identification of bacterial protein O-oligosaccharyltransferases and their glycoprotein substrates[J]. PLoS One, 2013, 8(5): e62768. |
44 | GEBHART C, IELMINI M V, REIZ B, et al. Characterization of exogenous bacterial oligosaccharyltransferases in Escherichia coli reveals the potential for O-linked protein glycosylation in Vibrio cholerae and Burkholderia thailandensis [J]. Glycobiology, 2012, 22(7): 962-974. |
45 | ELHENAWY W, SCOTT N E, TONDO M L, et al. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum [J]. Glycobiology, 2016, 26(3): 301-311. |
46 | HADJINEOPHYTOU C, ANONSEN J H, SVINGERUD T, et al. Sculpting the bacterial O-glycoproteome: functional analyses of orthologous oligosaccharyltransferases with diverse targeting specificities[J]. mBio, 2022, 13(3): e0379721. |
47 | HARDING C M, NASR M A, KINSELLA R L, et al. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type Ⅳ pilin, and the other one dedicated to O-glycosylation of multiple proteins[J]. Molecular Microbiology, 2015, 96(5): 1023-1041. |
48 | HARDING C M, NASR M A, SCOTT N E, et al. A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host[J]. Nature Communications, 2019, 10: 891. |
49 | KNOOT C J, ROBINSON L S, HARDING C M. A minimal sequon sufficient for O-linked glycosylation by the versatile oligosaccharyltransferase PglS[J]. Glycobiology, 2021, 31(9): 1192-1203. |
50 | FELDMAN M F, MAYER BRIDWELL A E, SCOTT N E, et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(37): 18655-18663. |
51 | DUKE J A, PASCHALL A V, ROBINSON L S, et al. Development and immunogenicity of a prototype multivalent group B Streptococcus bioconjugate vaccine[J]. ACS Infectious Diseases, 2021, 7(11): 3111-3123. |
52 | KNOOT C J, WANTUCH P L, ROBINSON L S, et al. Discovery and characterization of a new class of O-linking oligosaccharyltransferases from the Moraxellaceae family[J]. Glycobiology, 2023, 33(1): 57-74. |
53 | HARVEY H, KUS J V, TESSIER L, et al. Pseudomonas aeruginosa D-arabinofuranose biosynthetic pathway and its role in type Ⅳ pilus assembly[J]. Journal of Biological Chemistry, 2011, 286(32): 28128-28137. |
54 | HARDING C M, FELDMAN M F. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli [J]. Glycobiology, 2019, 29(7): 519-529. |
55 | ZARSCHLER K, JANESCH B, PABST M, et al. Protein tyrosine O-glycosylation—a rather unexplored prokaryotic glycosylation system[J]. Glycobiology, 2010, 20(6): 787-798. |
56 | MAES E, KRZEWINSKI F, GARENAUX E, et al. Glycosylation of BclA glycoprotein from Bacillus cereus and Bacillus anthracis exosporium is domain-specific[J]. Journal of Biological Chemistry, 2016, 291(18): 9666-9677. |
57 | DEL BINO L, ØSTERLID K E, WU D Y, et al. Synthetic glycans to improve current glycoconjugate vaccines and fight antimicrobial resistance[J]. Chemical Reviews, 2022, 122(20): 15672-15716. |
58 | MICOLI F, COSTANTINO P, ADAMO R. Potential targets for next generation antimicrobial glycoconjugate vaccines[J]. FEMS Microbiology Reviews, 2018, 42(3): 388-423. |
59 | HUANG Y L, WU C Y. Carbohydrate-based vaccines: challenges and opportunities[J]. Expert Review of Vaccines, 2010, 9(11): 1257-1274. |
60 | WILDER-SMITH A. Meningococcal disease: risk for international travellers and vaccine strategies[J]. Travel Medicine and Infectious Disease, 2008, 6(4): 182-186. |
61 | Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP) [J/OL]. MMWR Recommendations and Reports, 2000, 49(RR07): 1-10[2023-09-01]. . |
62 | SCHUERMAN L, PRYMULA R, HENCKAERTS I, et al. ELISA IgG concentrations and opsonophagocytic activity following pneumococcal protein D conjugate vaccination and relationship to efficacy against acute otitis media[J]. Vaccine, 2007, 25(11): 1962-1968. |
63 | PRYMULA R, PEETERS P, CHROBOK V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study[J]. The Lancet, 2006, 367(9512): 740-748. |
64 | ZHU H, ROLLIER C S, POLLARD A J. Recent advances in lipopolysaccharide-based glycoconjugate vaccines[J]. Expert Review of Vaccines, 2021, 20(12): 1515-1538. |
65 | COHEN D, ATSMON J, ARTAUD C, et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study[J]. The Lancet Infectious Diseases, 2021, 21(4): 546-558. |
66 | FRENCK R W JR, ERVIN J, CHU L, et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): a phase 2 randomised controlled trial[J]. The Lancet Infectious Diseases, 2019, 19(6): 631-640. |
67 | DAVID S, REUTER S, HARRIS S R, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread[J]. Nature Microbiology, 2019, 4(11): 1919-1929. |
68 | SHEN X, LAGERGÅRD T, YANG Y, et al. Group B Streptococcus capsular polysaccharide-cholera toxin B subunit conjugate vaccines prepared by different methods for intranasal immunization[J]. Infection and Immunity, 2001, 69(1): 297-306. |
69 | DOW J M, MAURI M, SCOTT T A, et al. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production[J]. Expert Review of Vaccines, 2020, 19(6): 507-527. |
70 | ROMANO M R, LEUZZI R, CAPPELLETTI E, et al. Recombinant Clostridium difficile toxin fragments as carrier protein for PSⅡ surface polysaccharide preserve their neutralizing activity[J]. Toxins, 2014, 6(4): 1385-1396. |
71 | NILO A, PASSALACQUA I, FABBRINI M, et al. Exploring the effect of conjugation site and chemistry on the immunogenicity of an anti-group B streptococcus glycoconjugate vaccine based on GBS67 pilus protein and type Ⅴ polysaccharide[J]. Bioconjugate Chemistry, 2015, 26(8): 1839-1849. |
72 | YUE H, MA G H. Polymeric micro/nanoparticles: particle design and potential vaccine delivery applications[J]. Vaccine, 2015, 33(44): 5927-5936. |
73 | NEEK M, KIM T I, WANG S W. Protein-based nanoparticles in cancer vaccine development[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15(1): 164-174. |
74 | CHEN J Y, WANG P, YUAN L Z, et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2[J]. Science Bulletin, 2022, 67(13): 1372-1387. |
75 | CHARLTON HUME H K, VIDIGAL J, CARRONDO M J T, et al. Synthetic biology for bioengineering virus-like particle vaccines[J]. Biotechnology and Bioengineering, 2019, 116(4): 919-935. |
76 | LI X, PAN C, SUN P, et al. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection[J]. Nano Research, 2022, 15(2): 1645-1653. |
77 | PAN C, WU J, QING S, et al. Biosynthesis of self-assembled proteinaceous nanoparticles for vaccination[J]. Advanced Materials, 2020, 32(42): e2002940. |
78 | HUANG B, XU Y, HU X H, et al. A backbone-centred energy function of neural networks for protein design[J]. Nature, 2022, 602(7897): 523-528. |
79 | PENG Z H, WU J, WANG K F, et al. Production of a promising biosynthetic self-assembled nanoconjugate vaccine against Klebsiella pneumoniae serotype O2 in a general Escherichia coli host[J]. Advanced Science, 2021, 8(14): e2100549. |
80 | SHI Y X, PAN C, WANG K F, et al. Construction of orthogonal modular proteinaceous nanovaccine delivery vectors based on mSA-biotin binding[J]. Nanomaterials, 2022, 12(5): 734. |
81 | TEMME K, ZHAO D H, VOIGT C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085-7090. |
82 | SMANSKI M J, BHATIA S, ZHAO D H, et al. Functional optimization of gene clusters by combinatorial design and assembly[J]. Nature Biotechnology, 2014, 32(12): 1241-1249. |
83 | ZELCBUCH L, ANTONOVSKY N, BAR-EVEN A, et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics[J]. Nucleic Acids Research, 2013, 41(9): e98. |
84 | TAYLOR G M, MORDAKA P M, HEAP J T. Start-Stop Assembly: a functionally scarless DNA assembly system optimized for metabolic engineering[J]. Nucleic Acids Research, 2019, 47(3): e17. |
85 | KAY E J, MAURI M, WILLCOCKS S J, et al. Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines[J]. Microbial Cell Factories, 2022, 21(1): 66. |
86 | GASPERINI G, RASO M M, SCHIAVO F, et al. Rapid generation of Shigella flexneri GMMA displaying natural or new and cross-reactive O-Antigens[J]. NPJ Vaccines, 2022, 7: 69. |
87 | JAROENTOMEECHAI T, KWON Y H, LIU Y W, et al. A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans[J]. Nature Communications, 2022, 13: 6325. |
88 | GLASSCOCK C J, YATES L E, JAROENTOMEECHAI T, et al. A flow cytometric approach to engineering Escherichia coli for improved eukaryotic protein glycosylation[J]. Metabolic Engineering, 2018, 47: 488-495. |
89 | CERONI F, ALGAR R, STAN G B, et al. Quantifying cellular capacity identifies gene expression designs with reduced burden[J]. Nature Methods, 2015, 12(5): 415-418. |
90 | LINTON D, DORRELL N, HITCHEN P G, et al. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway[J]. Molecular Microbiology, 2005, 55(6): 1695-1703. |
91 | NEUHARD J, THOMASSEN E. Altered deoxyribonucleotide pools in P2 eductants of Escherichia coli K-12 due to deletion of the dcd gene[J]. Journal of Bacteriology, 1976, 126(2): 999-1001. |
92 | ALAIMO C, CATREIN I, MORF L, et al. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides[J]. The EMBO Journal, 2006, 25(5): 967-976. |
93 | PÉREZ J M, MCGARRY M A, MAROLDA C L, et al. Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase[J]. Molecular Microbiology, 2008, 70(6): 1424-1440. |
94 | MUSUMECI M A, FARIDMOAYER A, WATANABE Y, et al. Evaluating the role of conserved amino acids in bacterial O-oligosaccharyltransferases by in vivo, in vitro and limited proteolysis assays[J]. Glycobiology, 2014, 24(1): 39-50. |
95 | STRUTTON B, JAFFÉ S R P, PANDHAL J, et al. Producing a glycosylating Escherichia coli cell factory: the placement of the bacterial oligosaccharyl transferase pglB onto the genome[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 686-692. |
96 | YATES L E, NATARAJAN A, LI M J, et al. Glyco-recoded Escherichia coli: recombineering-based genome editing of native polysaccharide biosynthesis gene clusters[J]. Metabolic Engineering, 2019, 53: 59-68. |
97 | NATARAJAN A, JAROENTOMEECHAI T, LI M J, et al. Metabolic engineering of glycoprotein biosynthesis in bacteria[J]. Emerging Topics in Life Sciences, 2018, 2(3): 419-432. |
98 | YU H, CHEN X. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates[J]. Organic & Biomolecular Chemistry, 2016, 14(10): 2809-2818. |
99 | GUARINO C, DELISA M P. A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins[J]. Glycobiology, 2012, 22(5): 596-601. |
100 | SHIMIZU Y, INOUE A, TOMARI Y, et al. Cell-free translation reconstituted with purified components[J]. Nature Biotechnology, 2001, 19(8): 751-755. |
101 | STARK J C, JAROENTOMEECHAI T, MOELLER T D, et al. On-demand, cell-free biomanufacturing of conjugate vaccines at the point-of-care[EB/OL]. bioRxiv, 2019: 681841[2023-09-01]. . |
102 | NATARAJAN A, JAROENTOMEECHAI T, CABRERA-SÁNCHEZ M, et al. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria[J]. Nature Chemical Biology, 2020, 16(10): 1062-1070. |
[1] | Alei ZHANG, Guoguang WEI, Chi ZHANG, Lei CHEN, Xi ZHOU, Wei LIU, Kequan CHEN. Research progress on bio-degradation and valuable bio-conversion of chitinous resources [J]. Synthetic Biology Journal, 2024, (): 1-21. |
[2] | Xiaoyue LIU, Pandi WANG, Gang Wu, Fang LIU. Efficient biosynthesis of glucoraphanin in Brassicaceae corps by genetic engineering [J]. Synthetic Biology Journal, 2024, (): 1-21. |
[3] | Jianming LIU, Chijian ZHANG, Bing ZHANG, Anping ZENG. Clostridium pasteurianum as Industrial Microorganism for Efficient Production of 1,3-Propanediol: From Metabolic Engineering, to Fermentation and Product Separation [J]. Synthetic Biology Journal, 2024, (): 1-17. |
[4] | Geng Li, Xiaolin Shen, Xinxiao Sun, Jia Wang, Qipeng Yuan. Research progress in recombinant expression and application of peroxidases [J]. Synthetic Biology Journal, 2024, (): 1-19. |
[5] | . [J]. Synthetic Biology Journal, 2024, 5(3): 397-400. |
[6] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[7] | Xuchang YU, Hui WU, Lei LI. Library construction and targeted BGC screening for more efficient discovery of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 492-506. |
[8] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[9] | Ru LEI, Hui TAO, Tiangang LIU. Deep genome mining boosts the discovery of microbial terpenoids [J]. Synthetic Biology Journal, 2024, 5(3): 507-526. |
[10] | Yingying CHEN, Yang LIU, Junjie SHI, Junying MA, Jianhua JU. CRISPR/Cas systems and their applications in gene editing with filamentous fungi [J]. Synthetic Biology Journal, 2024, 5(3): 672-693. |
[11] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[12] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[13] | Rongkai CAO, Jianhua QIN, Yaqing WANG. Advances in placenta-on-a-chip for reproductive medicine research [J]. Synthetic Biology Journal, 2024, (): 1-19. |
[14] | Shouqi ZHANG, Tao WANG, Yao KONG, Jiasheng ZOU, Yuanning LIU, Zhengren XU. Chemoenzymatic Synthesis of Natural Products: Evolution of Synthetic Methodology and Strategy [J]. Synthetic Biology Journal, 2024, (): 1-22. |
[15] | Lingling DONG, Feixuan LI, Hangbin LEI, Qidi SONG, Shizhen WANG. Biomimetic compartmentalization immobilization of multi-enzyme system [J]. Synthetic Biology Journal, 2024, (): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||