Please wait a minute...
Fig/Tab
RSS Service
Email Alert
Toggle navigation
Home
About Journal
About the Journal
Editorial Board
The 2nd EB
The 1st EB
Submission Guide
Journal
Just Accepted
Current Issue
Archive
Most Read Articles
Most Download Articles
Most Cited Articles
Subscription
Columns
Publishing Policy
Preprinting Policy
Data Policy
Publishing Ethics
中文
IMAGE/TABLE DETAILS
Figure Option
View
Download
Download As Powerpoint Slide
Halogenases in Biocatalysis: Advances in Mechanism Elucidation, Directed Evolution, and Green Manufacturing
WANG Mingpeng, CHEN Lei, ZHAO Yiran, ZHANG Yimin, ZHENG Qifan, LIU Xinyang, WANG Yixue, WANG Qinhong
Synthetic Biology Journal
DOI:
10.12211/2096-8280.2024-091
Fig. 7
The typical structure of single-component flavin-dependent halogenases
Extracts from the Article
然而,外源黄素还原酶的需求导致FDHs催化体系复杂化,显著增加了反应成本。值得关注的是,自然界微生物资源中存在单组份卤化酶(
S
ingle-
c
omponent FDH,ScFDH),这类酶通过单一蛋白整合还原酶与卤化酶的双重功能,可自主完成黄素再生与卤素转移的偶联反应。目前,发现两种ScFDH,一种是从海洋细菌
Pseudoalteromonas leteoviolacea
中分离得到的Bmp5[65],另一种是从水生细菌
Aetokthonos hydrillicola
中分离的AetF[66]。这两种酶都是单体,与之前研究的FDH存在显著的结构差异。与常见的方盒-金字塔结构不同,Bmp5和AetF的结构轮廓类似于澳洲大陆[67-68](图7)。如图7所示,Bmp5和AetF底部存在被随机卷曲基序环绕的较大空腔,允许NADPH和FADH
2
进入并与酶结合。Bmp5和AetF的轮廓及内部功能区域高度重叠,包括活性位点(Bmp5-K277,AetF-K258),显示了ScFDH的一般结构特征。最近,Tenebro等[38]报道了ScFDH家族的新成员ChlCz9(UNT00659.1),分离自链霉菌
Streptomyces tubbatahanensis
。然而,根据氨基酸序列比对和AlphaFold建模,笔者发现ChlCz9的预测结构与Bmp5和AetF显著不同,但与PltM高度相似(图7)。序列比对结果也显示ChlCz9缺乏结合NADP的基本元件。因此,需要进一步通过直接活性测定或高分辨率晶体结构分析,确认ChlCz9是否为新型ScFDH。
Other Images/Table from this Article
Fig. 1
Halogens are the most common and important modification groups in pesticides and pharmaceutical products
Fig. 2
Examples of halogenated natural products and the role of halogenases in molecular synthesis
[
4
,
12
,
15
-
16
]
Fig. 3
Cofactors and catalytic mechanisms of different types of halogenase
[
1
,
4
,
17
-
25
]
Fig. 4
Workflow of genome mining for halogenases and their application examples
[
34
]
Table 1 Examples of halogenase discovered by genome mining
Table 2 The uniqueness and superiority of the CLEAN algorithm framework
Fig. 5
Overview of chloride depletion workflow for revealing cryptic halogenation
[
59
]
Fig. 6
The typical structure and catalytic elements of flavin-dependent halogenases
Fig. 8
The proposed catalytic mechanism of PrnA by calculation and simulation
[
69
]
Fig. 9
The typical structure of NHFe/αKGHs
[
25
,
70
-
76
]
Fig. 10
The proposed catalytic mechanism of BesD by calculation and simulation
[
80
]
Fig. 11
The action mode and engineering strategies of novel nucleotide halogenase
[
46
]
Fig.12
The structural, function and catalytic mechanism of copper-dependent halogenase ApnU
[
81
]
Table 3 Typical engineering cases of natural halogenase in recent years
Fig. 13
The typical structure SAM-dependent halogenase
[
84
-
91
]
The red lines indicate the residues that are crucial for fluorination activity; the yellow lines indicate the residues that can form hydrogen bonds with the modification groups at the C2′ position of adenine
Fig. 14
Tunnel engineering improves the catalytic performance of Thal halogenase
[
96
]
Fig. 15
Directed evolution enhances the fluorination activity of non-heme iron oxidase
[
108
-
109
]
Fig. 16
Biocatalytic synthesis platform of halogenated tryptophan derivatives
[
113
]
Tab. 4 Examples of FDHs catalyzing enantioselective reactions
[
125
-
127
]
Tab. 5 Recent cases and key data related to the potential industrial application of halogenases
Fig. 17
Representative research progress in the field of halogenase research
Fig. 18
AI/ML drives the intelligent evolution of halogenase
[
138
-
156
]