Please wait a minute...
Fig/Tab
RSS Service
Email Alert
Toggle navigation
Home
About Journal
About the Journal
Editorial Board
The 2nd EB
The 1st EB
Submission Guide
Journal
Just Accepted
Current Issue
Archive
Most Read Articles
Most Download Articles
Most Cited Articles
Subscription
Columns
Publishing Policy
Preprinting Policy
Data Policy
Publishing Ethics
中文
IMAGE/TABLE DETAILS
Figure Option
View
Download
Download As Powerpoint Slide
Halogenases in Biocatalysis: Advances in Mechanism Elucidation, Directed Evolution, and Green Manufacturing
WANG Mingpeng, CHEN Lei, ZHAO Yiran, ZHANG Yimin, ZHENG Qifan, LIU Xinyang, WANG Yixue, WANG Qinhong
Synthetic Biology Journal
DOI:
10.12211/2096-8280.2024-091
Fig. 8
The proposed catalytic mechanism of PrnA by calculation and simulation
[
69
]
Extracts from the Article
FDHs的催化机制一直存在争议。已有实验和理论研究分别支持HOX对底物的直接卤化[27](机制1)或在底物卤化之前形成Lys-NH
2
Cl+(或Lys-NHCl)中间体[26](机制2)。最近,Barker等[69]以色氨酸卤化酶PrnA为研究对象,利用密度泛函理论(DFT)和分子动力学(MD)模拟探讨了这两种机制。研究者从HOCl与色氨酸在酶活性位点的结合稳定性入手,最终计算并比较了机制1和机制2的能量分布。通过计算模拟活性位点Lys79和Glu346的全部四种质子化状态,表明状态A(质子化的Lys79和去质子化的Glu346)对于HOCl稳定结合于活性位点是必需的,也是这两种机制催化过程中最可能的一种质子化状态。DFT计算显示,质子化状态A也是机制1的优选状态,因为Lys79与HOCl之间的强氢键增强了HOCl的反应性,使其能够对由HOCl解离形成的羟基进行质子化,同时Glu346的羧酸根则稳定形成的Wheland中间体并随即对其去质子化(图8)。此外,四种质子化状态下,机制2的能量屏障均显著高于机制1,因此可以排除机制2。这些计算为FDHs中HOX对底物直接卤化而非形成赖氨酸中间体的催化机制提供了证据,并揭示了Lys79和Glu346这两个关键残基在初始结合底物及卤化反应过程中的双重作用。
Other Images/Table from this Article
Fig. 1
Halogens are the most common and important modification groups in pesticides and pharmaceutical products
Fig. 2
Examples of halogenated natural products and the role of halogenases in molecular synthesis
[
4
,
12
,
15
-
16
]
Fig. 3
Cofactors and catalytic mechanisms of different types of halogenase
[
1
,
4
,
17
-
25
]
Fig. 4
Workflow of genome mining for halogenases and their application examples
[
34
]
Table 1 Examples of halogenase discovered by genome mining
Table 2 The uniqueness and superiority of the CLEAN algorithm framework
Fig. 5
Overview of chloride depletion workflow for revealing cryptic halogenation
[
59
]
Fig. 6
The typical structure and catalytic elements of flavin-dependent halogenases
Fig. 7
The typical structure of single-component flavin-dependent halogenases
Fig. 9
The typical structure of NHFe/αKGHs
[
25
,
70
-
76
]
Fig. 10
The proposed catalytic mechanism of BesD by calculation and simulation
[
80
]
Fig. 11
The action mode and engineering strategies of novel nucleotide halogenase
[
46
]
Fig.12
The structural, function and catalytic mechanism of copper-dependent halogenase ApnU
[
81
]
Table 3 Typical engineering cases of natural halogenase in recent years
Fig. 13
The typical structure SAM-dependent halogenase
[
84
-
91
]
The red lines indicate the residues that are crucial for fluorination activity; the yellow lines indicate the residues that can form hydrogen bonds with the modification groups at the C2′ position of adenine
Fig. 14
Tunnel engineering improves the catalytic performance of Thal halogenase
[
96
]
Fig. 15
Directed evolution enhances the fluorination activity of non-heme iron oxidase
[
108
-
109
]
Fig. 16
Biocatalytic synthesis platform of halogenated tryptophan derivatives
[
113
]
Tab. 4 Examples of FDHs catalyzing enantioselective reactions
[
125
-
127
]
Tab. 5 Recent cases and key data related to the potential industrial application of halogenases
Fig. 17
Representative research progress in the field of halogenase research
Fig. 18
AI/ML drives the intelligent evolution of halogenase
[
138
-
156
]