Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (4): 763-780.DOI: 10.12211/2096-8280.2021-089
• Invited Review • Previous Articles Next Articles
Lei LI1,2, Xin GAO2, Hongbin QI2, Chao LI2, Fuping LU1,2,3, Shuhong MAO1,2,3, Huimin QIN1,2,3
Received:
2021-09-01
Revised:
2022-02-17
Online:
2022-09-08
Published:
2022-08-31
Contact:
Shuhong MAO, Huimin QIN
李磊1,2, 高鑫2, 齐宏斌2, 李超2, 路福平1,2,3, 毛淑红1,2,3, 秦慧民1,2,3
通讯作者:
毛淑红,秦慧民
作者简介:
基金资助:
CLC Number:
Lei LI, Xin GAO, Hongbin QI, Chao LI, Fuping LU, Shuhong MAO, Huimin QIN. Research progress of modern biotechnology-promoted green degradation of polyethylene terephthalate in plastics[J]. Synthetic Biology Journal, 2022, 3(4): 763-780.
李磊, 高鑫, 齐宏斌, 李超, 路福平, 毛淑红, 秦慧民. 现代生物技术推动塑料中聚对苯二甲酸乙二酯绿色降解的研究进展[J]. 合成生物学, 2022, 3(4): 763-780.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-089
降解塑料类型 | 降解酶来源 | 降解酶名称 | 最佳降解温度/℃ | 文献 |
---|---|---|---|---|
PET | Fosmid基因文库 | LCC | 50 | [ |
Sphagnummagellanicum | EstC7 | 50 | [ | |
Thermobifida alba AHK119 | Est119 | 45~55 | [ | |
T.alba DSM43185 | Tha_Cut1 | 88.7 | [ | |
T.cellulosilytica DSM44535 | Tc_Cut1 | 50 | [ | |
Humicola insolens | HiC | 70 | [ | |
Sminthurusviridis AHK190 | Cut190 | 65 | [ | |
T. fusca DSM43793 | TfH | 55 | [ | |
T. halotolerans DSM44931 | Thh_Est | 50 | [ | |
T.insolens | pulA | 80 | [ | |
Thermomyces lanuginosus | TLL | 37 | [ | |
Acidovorax delafieldii BS-3 | PETase | 30 | [ | |
Ideonella sakaiensis 201-F6 | IsPETase | 30 | [ | |
T.fusca KW3 | TfCut2 | 70 | [ |
Tab. 1 Research progress of PET degrading enzymes
降解塑料类型 | 降解酶来源 | 降解酶名称 | 最佳降解温度/℃ | 文献 |
---|---|---|---|---|
PET | Fosmid基因文库 | LCC | 50 | [ |
Sphagnummagellanicum | EstC7 | 50 | [ | |
Thermobifida alba AHK119 | Est119 | 45~55 | [ | |
T.alba DSM43185 | Tha_Cut1 | 88.7 | [ | |
T.cellulosilytica DSM44535 | Tc_Cut1 | 50 | [ | |
Humicola insolens | HiC | 70 | [ | |
Sminthurusviridis AHK190 | Cut190 | 65 | [ | |
T. fusca DSM43793 | TfH | 55 | [ | |
T. halotolerans DSM44931 | Thh_Est | 50 | [ | |
T.insolens | pulA | 80 | [ | |
Thermomyces lanuginosus | TLL | 37 | [ | |
Acidovorax delafieldii BS-3 | PETase | 30 | [ | |
Ideonella sakaiensis 201-F6 | IsPETase | 30 | [ | |
T.fusca KW3 | TfCut2 | 70 | [ |
降解塑料类型 | 微生物名称 | 最适降解温度/℃ | 文献 |
---|---|---|---|
PET | Aspergillusoryzae CCUG33812 | 30 | [ |
Clostridium botulinum ATCC3502 | 50 | [ | |
Pseudomonas aestusnigri VGXO14T | 30 | [ | |
Fusarium oxysporum | 30 | [ | |
Fusarium solani | 30 | [ | |
Streptomyces scabies | 37 | [ | |
Penicillium citrinum | 30 | [ | |
Trichoderma reesei | 37 | [ | |
Burkholderiacepacia | 37 | [ | |
Candida antarctica | 60 | [ |
Tab. 2 Research progress of microorganisms in PET degradation
降解塑料类型 | 微生物名称 | 最适降解温度/℃ | 文献 |
---|---|---|---|
PET | Aspergillusoryzae CCUG33812 | 30 | [ |
Clostridium botulinum ATCC3502 | 50 | [ | |
Pseudomonas aestusnigri VGXO14T | 30 | [ | |
Fusarium oxysporum | 30 | [ | |
Fusarium solani | 30 | [ | |
Streptomyces scabies | 37 | [ | |
Penicillium citrinum | 30 | [ | |
Trichoderma reesei | 37 | [ | |
Burkholderiacepacia | 37 | [ | |
Candida antarctica | 60 | [ |
1 | FEIL A, PRETZ T. Mechanical recycling of packaging waste[M]. Plastic Waste and Recycling. Amsterdam: Elsevier, 2020: 283-319. |
2 | BORRELLE S B, RINGMA J, LAW K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369(6510): 1515-1518. |
3 | MOORE C J. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat[J]. Environmental Research, 2008, 108(2): 131-139. |
4 | TEUTEN E L, SAQUING J M, KNAPPE D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 2027-2045. |
5 | 许楹, 殷超凡, 岳纹龙, 等. 石油基塑料的微生物降解[J]. 生物工程学报, 2019, 35(11): 2092-2103. |
XU Y, YIN C F, YUE W L, et al. Microbial degradation of petroleum-based plastics[J]. Chinese Journal of Biotechnology, 2019, 35(11): 2092-2103. | |
6 | CATHERINE, NOVELLI. Rethinking the future of plastics [J]. Waste Management World, 2016, 17(1): 15-15. |
7 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
8 | 魏鑫嘉, 刘博洋, 王鸣, 等. 废塑料裂解及塑料油精制研究进展[J]. 工业催化, 2019, 27(2): 31-34. |
WEI X J, LIU B Y, WANG M, et al. Progress in pyrolysis of waste plastics and refining of waste plastic oil [J]. Industrial Catalysis, 2019, 27(2): 31-34. | |
9 | GU J D. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances[J]. International Biodeterioration & Biodegradation, 2003, 52(2): 69-91. |
10 | LEAHY J G, COLWELL R R. Microbial degradation of hydrocarbons in the environment[J]. Microbiological Reviews, 1990, 54(3): 305-315. |
11 | SATTI S M, SHAH A A. Polyester-based biodegradable plastics: an approach towards sustainable development[J]. Letters in Applied Microbiology, 2020, 70(6): 413-430. |
12 | STEFFAN R. Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation[M]. Cham: Springer International Publishing, 2018. |
13 | TANIGUCHI I, YOSHIDA S, HIRAGA K, et al. Biodegradation of PET: current status and application aspects[J]. ACS Catalysis, 2019, 9(5): 4089-4105. |
14 | ZHU B T, WANG D, WEI N. Enzyme discovery and engineering for sustainable plastic recycling[J]. Trends in Biotechnology, 2022, 40(1): 22-37. |
15 | CARDENAS E, TIEDJE J M. New tools for discovering and characterizing microbial diversity[J]. Current Opinion in Biotechnology, 2008, 19(6): 544-549. |
16 | DEVARAPALLI P, KUMAVATH R N. Metagenomics—a technological drift in bioremediation[M]// SHIOMI N. Advances in bioremediation of wastewater and polluted soil. IntechOpen, 2015. |
17 | SANKARA SUBRAMANIAN S H, BALACHANDRAN K R S, RANGAMARAN V R, et al. RemeDB: tool for rapid prediction of enzymes involved in bioremediation from high-throughput metagenome data sets[J]. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology, 2020, 27(7): 1020-1029. |
18 | MÜLLER C A, PERZ V, PROVASNEK C, et al. Discovery of polyesterases from moss-associated microorganisms[J]. Applied and Environmental Microbiology, 2017, 83(4): e02641-e02616. |
19 | SULAIMAN S, YAMATO S, KANAYA E, et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach[J]. Applied and Environmental Microbiology, 2012, 78(5): 1556-1562. |
20 | GAYTÁN I, SÁNCHEZ-REYES A, BURELO M, et al. Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis[J]. Frontiers in Microbiology, 2020, 10: 2986. |
21 | HAJIGHASEMI M, TCHIGVINTSEV A, NOCEK B, et al. Screening and characterization of novel polyesterases from environmental metagenomes with high hydrolytic activity against synthetic polyesters[J]. Environmental Science & Technology, 2018, 52(21): 12388-12401. |
22 | WEINBERGER S, BEYER R, SCHÜLLER C, et al. High throughput screening for new fungal polyester hydrolyzing enzymes[J]. Frontiers in Microbiology, 2020, 11: 554. |
23 | URBANEK A K, MIROŃCZUK A M, GARCÍA-MARTÍN A, et al. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2020, 1868(2): 140315. |
24 | DANSO D, SCHMEISSER C, CHOW J, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8): e02773-e02717. |
25 | KANG C H, OH K H, LEE M H, et al. A novel family VII esterase with industrial potential from compost metagenomic library[J]. Microbial Cell Factories, 2011, 10: 41. |
26 | UFARTÉ L, LAVILLE É, DUQUESNE S, et al. Metagenomics for the discovery of pollutant degrading enzymes[J]. Biotechnology Advances, 2015, 33(8): 1845-1854. |
27 | MAYUMI D, AKUTSU-SHIGENO Y, UCHIYAMA H, et al. Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome[J]. Applied Microbiology and Biotechnology, 2008, 79(5): 743-750. |
28 | JACQUIN J, CHENG J G, ODOBEL C, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the "plastisphere"[J]. Frontiers in Microbiology, 2019, 10: 865. |
29 | SANDER M, KOHLER H P E, MCNEILL K. Assessing the environmental transformation of nanoplastic through 13C-labelled polymers[J]. Nature Nanotechnology, 2019, 14(4): 301-303. |
30 | STURMBERGER L, WALLACE P W, GLIEDER A, et al. Synergism of proteomics and mRNA sequencing for enzyme discovery[J]. Journal of Biotechnology, 2016, 235: 132-138. |
31 | SCHNEIDER T, GERRITS B, GASSMANN R, et al. Proteome analysis of fungal and bacterial involvement in leaf litter decomposition[J]. Proteomics, 2010, 10(9): 1819-1830. |
32 | BISWAS R, SARKAR A. 'Omics' tools in soil microbiology: the state of the art[M]// Advances in soil microbiology: recent trends and future prospects. Springer, 2018: 35-64. |
33 | TESEI D, QUARTINELLO F, GUEBITZ G M, et al. Shotgun proteomics reveals putative polyesterases in the secretome of the rock-inhabiting fungus Knufia chersonesos [J]. Scientific Reports, 2020, 10: 9770. |
34 | ZADJELOVIC V, CHHUN A, QUARESHY M, et al. Beyond oil degradation: Enzymatic potential of Alcanivorax to degrade natural and synthetic polyesters[J]. Environmental Microbiology, 2020, 22(4): 1356-1369. |
35 | WALLACE P W, HAERNVALL K, RIBITSCH D, et al. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes [J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2291-2303. |
36 | JHONG J H, CHI Y H, LI W C, et al. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data[J]. Nucleic Acids Research, 2018, 47(D1): D285-D297. |
37 | 钱秀娟, 刘嘉唯, 薛瑞, 等. 合成生物学助力废弃塑料资源生物解聚与升级再造[J]. 合成生物学, 2021, 2(2): 161-180. |
QIAN X J, LIU J W, XUE R, et al. Synthetic biology boosts biological depolymerization and upgrading of waste plastics[J]. Synthetic Biology Journal, 2021, 2(2): 161-180. | |
38 | RONKVIST Å M, XIE W C, LU W H, et al. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009, 42(14): 5128-5138. |
39 | FEUERHACK A, ALISCH-MARK M, KISNER A, et al. Biocatalytic surface modification of knitted fabrics made of poly(ethylene terephthalate) with hydrolytic enzymes from Thermobifida fusca KW3b[J]. Biocatalysis and Biotransformation, 2008, 26(5):357-364. |
40 | MÜLLER R J, SCHRADER H, PROFE J, et al. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase fromT. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17): 1400-1405. |
41 | KLEEBERG I, WELZEL K, VANDENHEUVEL J, et al. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters[J]. Biomacromolecules, 2005, 6(1): 262-270. |
42 | BAKER P J, POULTNEY C, LIU Z Q, et al. Identification and comparison of cutinases for synthetic polyester degradation[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 229-240. |
43 | HU X P, THUMARAT U, ZHANG X, et al. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119[J]. Applied Microbiology and Biotechnology, 2010, 87(2): 771-779. |
44 | RIBITSCH D, ACERO E H, GREIMEL K, et al. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis[J]. Biocatalysis and Biotransformation, 2012, 30(1): 2-9. |
45 | ACERO H E, RIBITSCH D, STEINKELLNER G, et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida [J]. Macromolecules, 2011, 44(12): 4632-4640. |
46 | RONKVIST Å M, XIE W C, LU W H, et al. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009, 42(14): 5128-5138. |
47 | ODA M, YAMAGAMI Y, INABA S, et al. Enzymatic hydrolysis of PET: functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity[J]. Applied Microbiology and Biotechnology, 2018, 102(23): 10067-10077. |
48 | SULAIMAN S, YOU D J, KANAYA E, et al. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase[J]. Biochemistry, 2014, 53(11): 1858-1869. |
49 | KLEEBERG I, WELZEL K, VANDENHEUVEL J, et al. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters[J]. Biomacromolecules, 2005, 6(1): 262-270. |
50 | RIBITSCH D, HERRERO ACERO E, GREIMEL K, et al. A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA)[J]. Polymers, 2012, 4(1): 617-629. |
51 | RUIZ C, HOWARD G T. Nucleotide sequencing of a polyurethanase gene (pulA) from Pseudomonas fluorescens [J]. International Biodeterioration & Biodegradation, 1999, 44(2/3): 127-131. |
52 | ANDERSEN B K, BORCH K, ABO M, et al. Method of treating polyester fabrics: US5997584[P]. 1999-12-07. |
53 | FERNANDEZ-LAFUENTE R. Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 62(3/4): 197-212. |
54 | WANG X, LU D, JÖNSSON L J, et al. Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis (2-hydroxyethyl) terephthalate to the culture medium and enzymatic modification of PET fabrics[J]. Engineering in Life Sciences, 2008, 8(3): 268-276. |
55 | UCHIDA H, SHIGENO-AKUTSU Y, NOMURA N, et al. Cloning and sequence analysis of poly(tetramethylene succinate) depolymerase from Acidovorax delafieldii strain BS-3[J]. Journal of Bioscience and Bioengineering, 2002, 93(2): 245-247. |
56 | YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
57 | YANG Y, YANG J, JIANG L. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)"[J]. Science, 2016, 353(6301): 759. |
58 | FECKER T, GALAZ-DAVISON P, ENGELBERGER F, et al. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase[J]. Biophysical Journal, 2018, 114(6): 1302-1312. |
59 | JOO S, CHO I J, SEO H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9: 382. |
60 | HAN X, LIU W D, HUANG J W, et al. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8: 2106. |
61 | PERZ V, BAUMSCHLAGER A, BLEYMAIER K, et al. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases[J]. Biotechnology and Bioengineering, 2016, 113(5): 1024-1034. |
62 | KITADOKORO K, THUMARAT U, NAKAMURA R, et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution[J]. Polymer Degradation and Stability, 2012, 97(5): 771-775. |
63 | NUMOTO N, KAMIYA N, BEKKER G J, et al. Structural dynamics of the PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 in substrate-bound states elucidates the Ca2+-driven catalytic cycle[J]. Biochemistry, 2018, 57(36): 5289-5300. |
64 | INABA S, KAMIYA N, BEKKER G J, et al. Folding thermodynamics of PET-hydrolyzing enzyme Cut190 depending on Ca2+ concentration[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2655-2663. |
65 | BOLLINGER A, THIES S, KNIEPS-GRÜNHAGEN E, et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri-structural and functional insights[J]. Frontiers in Microbiology, 2020, 11: 114. |
66 | NIMCHUA T, EVELEIGH D E, SANGWATANAROJ U, et al. Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(8): 843. |
67 | NIMCHUA T, PUNNAPAYAK H, ZIMMERMANN W. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f.sp. pisi [J]. Biotechnology Journal, 2007, 2(3): 361-364. |
68 | DE CASTRO A M, CARNIEL A, NICOMEDES JUNIOR J, et al. Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources[J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(6): 835-844. |
69 | JABLOUNE R, KHALIL M, MOUSSA I E BEN, et al. Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies [J]. Microbes and Environments, 2020, 35(1): ME19086. |
70 | FARZI A, DEHNAD A, FOTOUHI A F. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process[J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 25-31. |
71 | BEAULIEU C, SIDIBÉ A, JABLOUNE R, et al. Physical, chemical and proteomic evidence of potato suberin degradation by the plant pathogenic bacterium Streptomyces scabiei [J]. Microbes and Environments, 2016, 31(4): 427-434. |
72 | LIEBMINGER S, EBERL A, SOUSA F, et al. Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum [J]. Biocatalysis and Biotransformation, 2007, 25(2/3/4): 171-177. |
73 | KONTKANEN H, SALOHEIMO M, PERE J, et al. Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme[J]. Applied Microbiology and Biotechnology, 2006, 72(4): 696-704. |
74 | HEUMANN S, EBERL A, POBEHEIM H, et al. New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres[J]. Journal of Biochemical and Biophysical Methods, 2006, 69(1/2): 89-99. |
75 | KIKKAWA Y, FUJITA M, ABE H, et al. Effect of water on the surface molecular mobility of poly(lactide) thin films: an atomic force microscopy study[J]. Biomacromolecules, 2004, 5(4): 1187-1193. |
76 | KAWAI F, ODA M, TAMASHIRO T, et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 10053-10064. |
77 | KAZA S, YAO L C, BHADA-TATA P, et al. What a waste 2.0:a global snapshot of solid waste management to 2050[M]. Washington: World Bank Group, 2018. |
78 | BARTH M, HONAK A, OESER T, et al. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films[J]. Biotechnology Journal, 2016, 11(8): 1082-1087. |
79 | QIAO Y X, HU R, CHEN D W, et al. Fluorescence-activated droplet sorting of polyethylene terephthalate degrading enzymes[J]. Journal of Hazardous Materials, 2022, 424:127417. |
80 | SILVA C, DA S, SILVA N, et al. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates[J]. Biotechnology Journal, 2011, 6(10): 1230-1239. |
81 | ARAÚJO R, SILVA C, O'NEILL A, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers[J]. Journal of Biotechnology, 2007, 128(4): 849-857. |
82 | CHEN Z Z, WANG Y Y, CHENG Y Y, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase[J]. Science of the Total Environment, 2020, 709: 136138. |
83 | CARNIEL A, VALONI É, NICOMEDES J, et al. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59: 84-90. |
84 | MIYAKAWA T, MIZUSHIMA H, OHTSUKA J, et al. Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190[J]. Applied Microbiology and Biotechnology, 2015, 99(10): 4297-4307. |
85 | THEN J, WEI R, OESER T, et al. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca [J]. Biotechnology Journal, 2015, 10(4): 592-598. |
86 | BIUNDO A, REICH J, RIBITSCH D, et al. Synergistic effect of mutagenesis and truncation to improve a polyesterase from Clostridium botulinum for polyester hydrolysis[J]. Scientific Reports, 2018, 8: 3745. |
87 | SENGA A, HANTANI Y, BEKKER G J, et al. Metal binding to cutinase-like enzyme from Saccharomonospora viridis AHK190 and its effects on enzyme activity and stability[J]. The Journal of Biochemistry, 2019, 166(2): 149-156. |
88 | AUSTIN H P, ALLEN M D, DONOHOE B S, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): E4350-E4357. |
89 | SON H F, CHO I J, JOO S, et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019, 9(4): 3519-3526. |
90 | SON H F, JOO S, SEO H, et al. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis [J]. Enzyme and Microbial Technology, 2020, 141: 109656. |
91 | BIUNDO A, SUBAGIA R, MAURER M, et al. Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering[J]. RSC Advances, 2019, 9(62): 36217-36226. |
92 | NAKAMURA A, KOBAYASHI N, KOGA N, et al. Positive charge introduction on the surface of thermostabilized PET hydrolase facilitates PET binding and degradation[J]. ACS Catalysis, 2021, 11(14): 8550-8564. |
93 | TOURNIER V, TOPHAM C M, GILLES A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802): 216-219. |
94 | THEN J, WEI R, OESER T, et al. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate[J]. Biochemistry & Molecular Biology, 2016, 6(5): 425-32. |
95 | RIBITSCH D, HERRERO ACERO E, PRZYLUCKA A, et al. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins[J]. Applied and Environmental Microbiology, 2015, 81(11): 3586-3592. |
96 | CHEN K, HU Y, DONG X Y, et al. Molecular insights into the enhanced performance of EKylated PETase toward PET degradation[J]. ACS Catalysis, 2021, 11(12): 7358-7370. |
97 | LIU B, HE L H, WANG L P, et al. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis [J]. Chembiochem, 2018, 19(14): 1471-1475. |
98 | REN W, OESER T, SCHMIDT J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition[J]. Biotechnology and Bioengineering, 2016, 113(8): 1658-1665. |
99 | HUANG Q Y, HIYAMA M, KABE T, et al. Enzymatic self-biodegradation of poly (L-lactic acid) films by embedded heat-treated and immobilized proteinase K[J]. Biomacromolecules, 2020, 21(8): 3301-3307. |
100 | HUANG B, XU Y, HU X H, et al. A backbone-centred energy function of neural networks for protein design[J]. Nature, 2022, 602(7897): 523-528. |
101 | GUEROIS R, NIELSEN J E, SERRANO L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations[J]. Journal of Molecular Biology, 2002, 320(2): 369-387. |
102 | MENG X X, YANG L X, LIU H Q, et al. Protein engineering of stable IsPETase for PET plastic degradation by Premuse[J]. International Journal of Biological Macromolecules, 2021, 180: 667-676. |
103 | CUI Y L, CHEN Y C, LIU X Y, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3): 1340-1350. |
104 | KNOTT B C, ERICKSON E, ALLEN M D, et al. Characterization and engineering of a two-enzyme system for plastics depolymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25476-25485. |
105 | PINTO A V, FERREIRA P, NEVES R P P, et al. Reaction mechanism of MHETase, a PET degrading enzyme[J]. ACS Catalysis, 2021, 11(16): 10416-10428. |
106 | HUANG P S, BOYKEN S E, BAKER D. The coming of age of de novo protein design[J]. Nature, 2016, 537(7620): 320-327. |
107 | DELRE C, JIANG Y F, KANG P, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes[J]. Nature, 2021, 592(7855): 558-563. |
108 | OSTERHOUT R E, BURGARD A P, PHARKYA P, et al. Microorganisms and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene: US8715957 [J]. 2012. |
109 | GRAGLIA M, KANNA N, ESPOSITO D. Lignin refinery: towards the preparation of renewable aromatic building blocks[J]. ChemBioEng Reviews, 2015, 2(6): 377-392. |
110 | LUO Z W, LEE S Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli [J]. Nature Communications, 2017, 8: 15689. |
111 | SALUSJÄRVI L, HAVUKAINEN S, KOIVISTOINEN O, et al. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2019, 103(6): 2525-2535. |
112 | PANG J F, ZHENG M Y, WANG A Q, et al. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6601-6608. |
113 | 张可, 胡芮绮, 蔡珉敏, 等. 黄粉虫取食和消化降解PE塑料薄膜的研究[J]. 化学与生物工程, 2017, 34(4): 47-49. |
ZHANG K, HU R Q, CAI M M, et al. Degradation of plastic film containing polyethylene(PE) by yellow meal worms[J]. Chemistry & Bioengineering, 2017, 34(4): 47-49. | |
114 | KHAN I, NAGARJUNA R, DUTTA J R, et al. Enzyme-embedded degradation of poly(ε-caprolactone) using lipase-derived from probiotic Lactobacillus plantarum [J]. ACS Omega, 2019, 4(2): 2844-2852. |
115 | CHEN X Q, GUO Z Y, WANG L, et al. Directional-path modification strategy enhances PET hydrolase catalysis of plastic degradation[J]. Journal of Hazardous Materials, 2022, 433: 128816. |
116 | PALM G J, REISKY L, BÖTTCHER D, et al. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate[J]. Nature Communications, 2019, 10: 1717. |
117 | LU H, DIAZ DJ, CZARNECKI NJ, et al. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907) :662-667. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[3] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[4] | Mingwei SHAO, Simian SUN, Shimao YANG, Guo-Qiang CHEN. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, (): 1-18. |
[5] | Haoran YANG, Farong Ye, Ping HUANG, Ping WANG. Recent advances in glycoprotein synthesis [J]. Synthetic Biology Journal, 2024, (): 1-29. |
[6] | Mengmeng ZHENG, Benben LIU, Zhi LIN, Xudong QU. Recent advances in chemoenzymatic synthesis of important steroids [J]. Synthetic Biology Journal, 2024, (): 1-19. |
[7] | Yu CHEN, Kang ZHANG, Yijing QIU, Caiyun CHENG, Jingjing YIN, Tianshun SONG, Jingjing XIE. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, (): 1-24. |
[8] | Ying DONG, Mengdan MA, Weiren HUANG. Progress in the miniaturization of CRISPR-Cas systems [J]. Synthetic Biology Journal, 2024, (): 1-14. |
[9] | Jingyong ZHU, Junxiang LI, Xuhui LI, Jin ZHANG, Wenjing WU. Advances in applications of deep learning for predicting sequence-based protein interactions [J]. Synthetic Biology Journal, 2024, 5(1): 88-106. |
[10] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[11] | Ruiqi WANG, Luonan CHEN. Synthetic biology based on dynamical analysis [J]. Synthetic Biology Journal, 2024, 5(1): 77-87. |
[12] | Weisong LIU, Kuncheng ZHANG, Huijuan CUI, Zhiguang ZHU, Yiheng ZHANG, Lingling ZHANG. Electro-assisted carbon dioxide biotransformation [J]. Synthetic Biology Journal, 2023, 4(6): 1191-1222. |
[13] | Qingxiang ZHENG. Metabolic flux analysis of Shewanella sp. MR-4 with different terminal electron receptors [J]. Synthetic Biology Journal, 2023, 4(6): 1300-1320. |
[14] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic 4+2 and 2+2 cycloaddition reactions: understanding and application of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2023, (): 1-7. |
[15] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||